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Abstract. We consider representations of the Virasoro algebra, a one-dimensional cen-

tral extension of the Lie algebra of vectorfields on the unit circle. Positive-energy, highest

weight and Verma representations are defined and investigated. The Shapovalov form

is introduced, and we study Kac formula for its determinant and some consequences for

unitarity and degeneracy of irreducible highest weight representations. In the last section

we realize the centerless Ramond algebra as a super Lie algebra of superderivations.
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1 Introduction

In this second part of the master thesis we review some of the representation theory for
the Virasoro algebra. It is the unique nontrivial one-dimensional central extension of
the Witt algebra, which is the Lie algebra of all vectorfields on the unit circle. More
specifically we will study highest weight representations, which is an important class
of representations. Shapovalov ([5]) defined a Hermitian form on any highest weight
representation. This in particular induces a nondegenerate form on the irreducible
quotient. Thus properties of irreducible highest weight representations can be studied
in terms of this form. In [2], [3] Kac gave a formula for the determinant of the Shapovalov
form. The formula was proved by Feigin and Fuchs in [1].

In Section 2 we introduce some notation that will be used throughout the article.
The Witt algebra is defined algebraically as the Lie algebra of all derivations of Laurent
polynomials. We show that it has a unique nontrivial one-dimensional central extension,
namely the Virasoro algebra. We define highest weight, positive energy, and Verma
representations in Section 3. Conditions for an irreducible highest weight representation
to be degenerate or unitary are considered in Section 4. We also provide some lemmas to
support the main theorem (Theorem 28), the Kac determinant formula, although we do
not give a complete proof. Finally, in Section 5 we consider a supersymmetric extension
of the Witt algebra, and we show that it has a representation as superderivations on
C[t, t−1, ε | ε2 = 0]. Superderivations are special cases of σ-derivations, as described in
the first part of the master thesis.

2 Definitions and notations

For a Lie algebra g, let U(g) denote its universal enveloping algebra.

Definition 1 (Extension). Let g and I be Lie algebras. An extension g̃ of g by I is a
short exact sequence

0 −−−→ I −−−→ g̃ −−−→ g −−−→ 0

of Lie algebras. The extension is central if the image of I is contained in the center of
g̃, and one-dimensional if I is.

Note that g̃ is isomorphic to g⊕I as linear spaces. Given two Lie algebras g and I, one
may always give g⊕I a Lie algebra structure by defining [x+a, y+b]g⊕I = [x, y]g+[a, b]I
for x, y ∈ g, a, b ∈ I. This extension is considered to be trivial.

Definition 2 (Antilinear anti-involution). An antilinear anti-involution ω on a complex
algebra A is a map A→ A such that

ω(λx+ µy) = λω(x) + µω(y) for λ, µ ∈ C, x, y ∈ A (1)
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and
ω(xy) = ω(y)ω(x) for x, y ∈ A, (2)

ω(ω(x)) = x for x ∈ A. (3)

Definition 3 (Unitary representation). Let g be a Lie algebra with an antilinear anti-
involution ω : g → g. Let π : g → gl(V ) be a representation of g in a linear space
V equipped with an Hermitian form 〈·, ·〉. The form 〈·, ·〉 is called contravariant with
respect to ω if

〈π(x)u, v〉 = 〈u, π(ω(x))v〉 for all x ∈ g, u, v ∈ V.

The representation π is said to be unitary if in addition 〈v, v〉 > 0 for all nonzero v ∈ V .

Remark 1. If only one representation is considered, we will often use module notation
and write xu for π(x)u whenever it is convenient to do so.

The following Lemma will be used a number of times.

Lemma 1. Let V be a representation of a Lie algebra g which decomposes as a direct
sum of eigenspaces of a finite dimensional commutative subalgebra h:

V =
⊕
λ∈h∗

Vλ (4)

where Vλ = {v ∈ V | hv = λ(h)v for all h ∈ h}, and h∗ is the dual vector space of h.
Then every subrepresentation U of V respects this decomposition in the sence that

U =
⊕
λ∈h∗

(U ∩ Vλ).

Proof. Any v ∈ V can be written in the form v =
∑m

j=1wj, where wj ∈ Vλj according
to (4). Since λi 6= λj for i 6= j there is an h ∈ h such that λi(h) 6= λj(h) for i 6= j. Now
if v ∈ U , then

v = w1 + w2 + . . . + wm
h(v) = λ1(h)w1 + λ2(h)w2 + . . . + λm(h)wm

...
hm−1(v) = λ1(h)m−1w1 + λ2(h)m−1w2 + . . . + λm(h)m−1wm

The coefficient matrix in the right hand side is a Vandermonde matrix, and thus invert-
ible. Therefore each wj is a linear combination of vectors of the form hi(v), all of which
lies in U , since v ∈ U and U is a representation of g. Thus each wj ∈ U ∩ Vλj and the
proof is finished.
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2.1 The Witt algebra

The Witt algebra d can be defined as the complex Lie algebra of derivations of the
algebra C[t, t−1] of complex Laurent polynomials. Explicitly,

C[t, t−1] = {
∑
k∈Z

akt
k
∣∣ ak ∈ C, only finitely many nonzero}

and

d = {D : C[t, t−1]→ C[t, t−1]
∣∣ D is linear and D(pq) = D(p)q + pD(q)} (5)

with the usual Lie bracket: [D,E] = DE − ED. One can check that d is closed under
this product. The following proposition reveals the structure of d.

Proposition 2. Consider the elements dn of d defined by

dn = −tn+1 d

dt
for n ∈ Z.

Then
d =

⊕
n∈Z

Cdn (6)

and
[dm, dn] = (m− n)dm+n for m,n ∈ Z. (7)

Proof. Clearly d ⊇
⊕

n∈ZCdn. To show the reverse inclusion, let D ∈ d be arbitrary.
Then, using (5), i.e. that D is a derivation of C[t, t−1], we obtain

D(1) = D(1 · 1) = D(1) · 1 + 1 ·D(1) = 2D(1).

Hence D(1) = 0, which implies that

0 = D(t · t−1) = D(t) · t−1 + t ·D(t−1),

which shows that
D(t−1) = D(t) · (−t−2). (8)

Now define the element E ∈
⊕

n∈ZCdn by

E = D(t)
d

dt
,

and note that E(t) = D(t). Note further that E(t−1) = D(t) · (−t−2) and thus, by (8),
that the derivations E and D coincide on the other generator t−1 of C[t, t−1] also. Using
the easily proved fact that a derivation of an algebra is uniquely determined by the value
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on the generators of the algebra, we conclude that D = E. Therefore d ⊆
⊕

n∈ZCdn
and the proof of (6) is finished.

We now show the relation (7). For any p(t) ∈ C[t, t−1], we have

(dmdn)(p(t)) = dm(−tn+1 · p′(t)) =

= dm(−tn+1) · p′(t) + (−tn+1) · dm(p′(t)) =

= −tm+1 · (−(n+ 1))tn · p′(t) + (−tn+1)(−tm+1)p′′(t) =

= (n+ 1)tm+n+1 · p′(t) + tm+n+2p′′(t).

The second of these terms is symmetric in m and n, and therefore vanishes when we
take the commutator, yielding

[dm, dn](p(t)) =
(
(n+ 1)− (m+ 1)

)
tm+n+1p′(t) = (m− n) · dm+n(p(t)),

as was to be shown.

Remark 2. Note that the commutation relation (7) shows that d is Z-graded as a Lie
algebra with the grading (6).

2.2 Existence and uniqueness of Vir

Theorem 3. The Witt algebra d has a unique nontrivial one-dimensional central ex-
tension d̃ = d ⊕ Cc, up to isomorphism of Lie algebras. This extension has a basis
{c} ∪ {dn | n ∈ Z}, where c ∈ Cc, such that the following commutation relations are
satisfied:

[c, dn] = 0 for n ∈ Z, (9)

[dm, dn] = (m− n)dm+n + δm,−n
m3 −m

12
c for m,n ∈ Z. (10)

The extension d̃ is called the Virasoro algebra, and is denoted by Vir.

Proof. We first prove uniqueness. Suppose d̃ = d ⊕ Cc is a nontrivial one-dimensional
central extension of d. Let dn, n ∈ Z denote the standard basis elements of d, then we
have

[dm, dn] = (m− n)dm+n + a(m,n)c

[c, dn] = 0
(11)

for m,n ∈ Z, where a : Z×Z→ C is some function. Note that we must have a(m,n) =
−a(n,m) because d̃ is a Lie algebra and thus has an anti-symmetric product:

0 = [dm, dn] + [dn, dm] = (m− n+ n−m)d0 + (a(m,n) + a(n,m))c.
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Define new elements

d′n =

{
d0 if n = 0

dn − 1
n
a(0, n)c if n 6= 0

c′ = c

Then {c′} ∪ {d′n | n ∈ Z} is a new basis for d̃. The new commutation relations are

[c′, d′n] = 0

[d′m, d
′
n] = (m− n)dm+n + a(m,n)c =

= (m− n)d′m+n + a′(m,n)c′ (12)

for m,n ∈ Z, where a′ : Z× Z→ C is defined by

a′(m,n) =

{
a(m,n) if m+ n = 0
a(m,n) + m−n

m+n
a(0,m+ n) if m+ n 6= 0

(13)

Note that since a is antisymmetric, so is a′, and therefore in particular a′(0, 0) = 0.
From (13) follows that a′(0, n) = 0 for any nonzero n. These facts together with (12)
shows that

[d′0, d
′
n] = −nd′n (14)

Using now the Jacobi identity which holds in d̃ we obtain

[[d′0, d
′
n], d′m] + [[d′n, d

′
m], d′0] + [[d′m, d

′
0], d

′
n] = 0

[−nd′n, d′m] + [(n−m)d′n+m + a′(n,m)c′, d′0]− [d′n,md
′
m] = 0

−(n+m)(n−m)d′n+m − (n+m)a′(n,m)c′ + (n−m)(n+m)d′n+m = 0

which shows that a′(n,m) = 0 unless n + m = 0. Thus, setting b(m) = a′(m,−m),
equation (12) can be written

[c′, d′n] = 0

[d′m, d
′
n] = (m− n)d′m+n + δm+n,0b(m)c′

Again we use Jacobi identity

[[d′n, d
′
1], d

′
−n−1] + [[d′1, d

′
−n−1], d

′
n] + [[d′−n−1, d

′
n], d′1] = 0

[(n− 1)d′n+1, d
′
−n−1] + [(n+ 2)d′−n, d

′
n] + [(−2n− 1)d′−1, d

′
1] = 0

(n−1)(2(n+1)d′0+b(n+1)c′)+(n+2)(−2nd′0+b(−n)c′)+(−2n−1)(−2d′0+b(−1)c′) = 0

(2n2 − 2− 2n2 − 4n+ 4n+ 2)d′0 +
(
(n− 1)b(n+ 1)− (n+ 2)b(n) + (2n+ 1)b(1)

)
c′ = 0,
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which is equivalent to

(n− 1)b(n+ 1) = (n+ 2)b(n)− (2n+ 1)b(1).

This is a second order linear recurrence equation in b. One verifies that b(m) = m and
b(m) = m3 are two solutions, obviously linear independent. Thus there are α, β ∈ C
such that

b(m) = αm3 + βm.

Finally, we set

dn = d′n + δn,0
α + β

2
c′,

and
c = 12αc′.

If α 6= 0, this is again a change of basis. Then, for m+ n 6= 0,

[dm, dn] = (m− n)d′m+n + δm+n,0(αm
3 + βm)c′ =

= (m− n)dm+n + δm+n,0
m3 −m

12
c,

and for m+ n = 0,

[dm, dn] = (m− n)d′m+n + (αm3 + βm)c′ =

= 2md′m+n + 2m
α + β

2
c′ + (αm3 − αm)c′ =

= 2mdm+n +
m3 −m

12
c =

= (m− n)dm+n + δm+n,0
m3 −m

12
c.

From these calculations we also see that α = 0 corresponds to the trivial extension.
The proof of uniqueness is finished. To prove existence, it is enough to check that the
relations (9)-(10) define a Lie algebra, which is easy.

The antilinear map ω : Vir→ Vir defined by requiring

ω(dn) = d−n (15)

ω(c) = c (16)

is an antilinear anti-involution on Vir. Indeed

[ω(dn), ω(dm)] = [d−n, d−m] = (−n+m)d−n−m + δ−n,m
−n3 + n

12
c =

= (m− n)d−(m+n) + δm,−n
m3 −m

12
c = ω([dm, dn]).
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Contravariance of Hermitian forms on representations of Vir, and unitarity of the rep-
resentations will always be considered with respect to this ω.

Note that Vir has the following triangular decomposition into Lie subalgebras:

n− =
∞⊕
i=1

Cd−i h = Cc⊕ Cd0 n+ =
∞⊕
i=1

Cdi (17)

3 Representations of Vir

3.1 Positive-energy and highest weight representations

Definition 4 (Positive-energy representation of Vir). Let π : Vir → gl(V ) be a repre-
sentation of Vir in a linear space V such that

a) V admits a basis consisting of eigenvectors of π(d0),

b) all eigenvalues of the basis vectors are non-negative, and

c) the eigenspaces of π(d0) are finite-dimensional.

Then π is said to be a positive-energy representation of Vir.

Definition 5 (Highest weight representation of Vir). A representation of Vir in a linear
space V is a highest weight representation if there is an element v ∈ V and two numbers
C, h ∈ C, such that

cv = Cv, (18)

d0v = hv, (19)

V = U(Vir)v = U(n−)v, (20)

n+v = 0. (21)

The vector v is called a highest weight vector and (C, h) is the highest weight.

Remark 3. The second equality in condition (20) follows from (18), (19) and (21). To
see this, use the Poincaré-Birkhoff-Witt theorem:

U(Vir) = U(n−)U(h)U(n+),

and write U(n+) = C · 1 + U(n+)n+. Then

U(Vir)v = U(n−)U(h)(C · 1 + U(n+)n+)v = U(n−)U(h)v = U(n−)v,

where we used (21) in the second equality, and (18)-(19) in the last.
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Proposition 4. Any highest weight representation V with highest weight (C, h) has the
decomposition

V =
⊕
k∈Z≥0

Vh+k (22)

where Vh+k is the (h+ k)-eigenspace of d0 spanned by vectors of the form

d−is . . . d−i1(v) with 0 < i1 ≤ . . . ≤ is, i1 + . . .+ is = k.

Proof. Using that [d0, ·] is a derivation of U(Vir) we get

d0d−is . . . d−i1 − d−is . . . d−i1d0 =
s∑

m=1

d−is . . . d−im+1 [d0, d−im ]d−im−1 . . . d−i1 =

=
s∑

m=1

imd−is . . . d−im+1d−imd−im−1 . . . d−i1 =

= (i1 + . . .+ is)d−is . . . d−i1 . (23)

Therefore we have

d0(d−is . . . d−i1(v)) = (i1 + . . .+ is)d−is . . . d−i1(v) + d−is . . . d−i1d0(v) =

= (i1 + . . .+ is + h)d−is . . . d−i1(v).

Proposition 5. An irreducible positive energy representation of Vir is a highest weight
representation.

Proof. Let Vir → gl(V ) be an irreducible positive energy representation of Vir in a
linear space V , and let w ∈ V be a nontrivial eigenvector for d0. Then d0w = λw for
some λ ∈ R≥0. Now for any t ∈ Z≥0 and (jt, . . . , j1) ∈ Zt we have, using the same
calculation as in Proposition 4,

d0djt . . . dj1w = (λ− (jt + . . .+ j1))djt . . . dj1w.

Since V is a positive energy representation, this shows that the set

M = {j ∈ Z
∣∣ djt . . . dj1w 6= 0 for some t ≥ 0, (jt, . . . , j1) ∈ Zt with jt + . . .+ j1 = j}

is bounded from above by λ. It is also nonempty, because 0 ∈ M . Let t ≥ 0 and
(jt, . . . , j1) ∈ Zt with jt + . . .+ j1 = maxM be such that v = djt . . . dj1w 6= 0. Then

djv = djdjt . . . dj1w = 0 for j > 0 (24)
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since otherwise j + maxM = j + jt + . . .+ j1 ∈M , which is impossible. We also have

d0v = d0djt . . . dj1w = (λ− (jt + . . .+ j1))djt . . . dj1w = hv (25)

where we set h = λ − (jt + . . . + j1). Using some argument involving restrictions to
eigenspaces, it can be shown using Schur’s Lemma that c acts by some multiple C ∈ C
of the identity operator on V . In particular we have

cv = Cv. (26)

Consider the submodule V ′ of V defined by

V ′ = U(Vir)v. (27)

It is nontrivial, since 0 6= v ∈ V ′. Therefore, since V is irreducible, we must have
V = V ′. Recalling Remark 3 and using (24)-(27), it now follows that V is a highest
weight representation, and the proof is finished.

Proposition 6. A unitary highest weight representation V of Vir is irreducible.

Proof. If U is a subrepresentation of V , then V = U ⊕ U⊥. Using the decomposition
(22) of V and Lemma 1 we obtain

U =
⊕
k≥0

U ∩ Vh+k U⊥ =
⊕
k≥0

U⊥ ∩ Vh+k

In particular, since Vh is one-dimensional and spanned by some nonzero highest weight
vector v, we have either v ∈ U or v ∈ U⊥. Thus either U = V or U = 0.

3.2 Verma representations

Definition 6 (Verma representation of Vir). A highest weight representation M(C, h)
of Vir with highest weight vector v and highest weight (C, h) is called a Verma repre-
sentation if it satisfies the following universal property:

For any highest weight representation V of Vir with heighest weight vector u and
highest weight (C, h), there exists a unique epimorphism ϕ : M(C, h) → V of Vir-
modules which maps v to u.

Proposition 7. For each C, h ∈ C there exists a unique Verma representation M(C, h)
of Vir with highest weight (C, h). Furthermore, the map U(n−) → M(C, h) sending x
to xv is not only surjective, but also injective.
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Proof. To prove existence, let I(C, h) denote the left ideal in U(Vir) generated by the
elements {dn | n > 0} ∪ {d0 − h · 1U(Vir), c − C · 1U(Vir)}, where 1U(Vir) is the identity
element in U(Vir). Form the linear space M(C, h) = U(Vir)/I(C, h), and define a map
π : Vir→ gl(M(C, h)) by

π(x)(u+ I(C, h)) = xu+ I(C, h).

Then π is a representation of Vir. Furthermore, it is a highest weight representation of
Vir with highest weight vector v = 1U(Vir) + I(C, h) and highest weight (C, h).

We now show that π is a Verma representation. Let ρ : Vir → gl(V ) be any
highest weight representation with highest weight (C, h) and highest weight vector u.
By restricting the multiplication we can view U(Vir) as a left Vir-module. The action
of U(Vir) on V

α : U(Vir)→ V

x→ xu

then becomes a Vir-module homomorphism. We claim that α(I(C, h)) = 0. Indeed, it
is enough to check that the image under α of the generators dn, n > 0, d0 − h · 1U(Vir),
and c− C · 1U(Vir) of the left ideal are zero, and this follows since V is a highest weight
representation of Vir with highest weight vector u and highest weight (C, h). Thus α
induces a Vir-module epimorphism ϕ : U(Vir)/I(C, h) = M(C, h) → V which clearly
maps v to u. This shows existence of the map ϕ.

Next we prove that there can exist at most one Vir-module epimorphism ϕ : M(C, h)→
V which maps v to u. Since M(C, h) is a highest weight module, any element is a linear
combination of elements of the form

d−is . . . d−i1 + I(C, h),

where ij > 0 and s ≥ 0. We show by induction on s that ϕ is uniquely defined on each
such element. If s = 0, we must have ϕ(1U(Vir) + I(C, h)) = ϕ(v) = u. If s > 0 we have

ϕ(d−is . . . d−i1 + I(C, h)) = ϕ(π(d−is)(d−is−1 . . . d−i1 + I(C, h) =

= ρ(d−is)ϕ(d−is−1 . . . d−i1 + I(C, h))

since ϕ is a Vir-module homomorphism. By induction on s, ϕ is uniquely defined on
M(C, h). Consequently, π is a Verma representation.

Uniqueness of the Verma representaion M(C, h) is a standard exercise in abstract
nonsense. Injectivity of the map U(n−) 3 x 7→ π(x)(1U(Vir) + I(C, h)) = x + I(C, h)
follows from the Poincaré-Birkhoff-Witt theorem.

In the rest of the article, v shall always denote a fixed choice of a nonzero highest
weight vector in M(C, h).
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Proposition 8. a) The Verma representation M(C, h) has the decomposition

M(C, h) =
⊕
k∈Z≥0

M(C, h)h+k (28)

where M(C, h)h+k is the (h+ k)-eigenspace of d0 of dimension p(k) spanned by vectors
of the form

d−is . . . d−i1(v) with 0 < i1 ≤ . . . ≤ is, i1 + . . .+ is = k

b) M(C,h) is indecomposable, i.e. we cannot find nontrivial subrepresentations W1,W2

of M(C, h) such that
M(C, h) = W1 ⊕W2.

c) M(C,h) has a unique maximal proper subrepresentation J(C, h), and

V (C, h) = M(C, h)/J(C, h)

is the unique irreducible highest weight representation with highest weight (C, h).

Proof. Part (a) is a restatement of Proposition 4 for Verma modules. It remains to de-
termine the dimension of an eigenspace Vh+k of d0. Note that in a Verma representation,
the set of all the vectors

d−is . . . d−i1(v), is ≥ . . . ≥ i1 ≥ 1, i1 + . . .+ is = k

form a basis for Vh+k because a vanishing linear combination would contradict the in-
jectivity of the linear map U(n−) 3 x 7→ xv ∈M(C, h). The number of such vectors are
precisely the number of partitions of k into positive integers.

For part b), assume that M(C, h) = W1 ⊕W2 is a decomposition into subrepresen-
tations. Using Lemma 1 with g = Vir and h = Cd0 and V = M(C, h) and U = W1 and
U = W2, we would have

W1 =
⊕
k≥0

W1 ∩M(C, h)h+k W2 =
⊕
k≥0

W2 ∩M(C, h)h+k

respectively. Since dimM(C, h)h = 1, we have either M(C, h)h ⊆ W1 or M(C, h)h ⊆ W2.
In the former case, v ∈ W1 which imply, since W1 is a representation of Vir, that
M(C, h) = U(V ir)v ⊆ W1. In other words, W1 = M(C, h) and W2 = 0. The other case
is symmetric. Thus no nontrivial decompositions can exist.

To prove c), we observe from the proof of part b) that a subrepresentation of M(C, h)
is proper if and only if it does not contain the highest weight vector v. Thus if we form
the sum J(C, h) of all proper subrepresentations of M(C, h), it is itself a proper subrepre-
sentation of M(C, h). Clearly J(C, h) is maximal among all proper subrepresentations.
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It is also unique, because it contains and is contained in any other maximal proper
subrepresentation of M(C, h).

For the uniqueness of V (C, h), let V ′(C, h) be any irreducible highest weight module
with the same highest weight (C, h). Then by definition of the Verma module there is
a submodule J ′(C, h) of M(C, h) such that

V ′(C, h) = M(C, h)/J ′(C, h).

Since V ′(C, h) is irreducible, J ′(C, h) must be maximal and proper, and hence equal to
J(C, h). Thus V ′(C, h) = V (C, h), and the proof is finished.

3.3 Shapovalov’s form

Proposition 9. Let C, h ∈ R. Then

a) there is a unique contravariant Hermitian form 〈·|·〉 on M(C,h) such that 〈v|v〉 = 1,

b) the eigenspaces of d0 are pairwise orthogonal with respect to this form,

c) J(C, h) = ker〈·|·〉 ≡ {u ∈M(C, h) | 〈u|w〉 = 0 for all w ∈M(C, h)}.

The form is called Shapovalov’s form.

Proof. a) We first prove uniqueness of the form. The antilinear anti-involution ω : Vir→
Vir defined in equations (15)-(16) extends uniquely to an antilinear anti-involution ω̃ :
U(Vir)→ U(Vir) on the universal enveloping algebra as follows:

ω̃(x1 . . . xm) = ω(xm) . . . ω(x1)

for elements xi ∈ Vir. If x, y ∈ U(Vir), then

〈xv|yv〉 = 〈v|ω̃(x)yv〉 (29)

since the form is contravariant.
The universal enveloping algebra U(Vir) of Vir has the following decomposition:

U(Vir) = (n−U(Vir) + U(Vir)n+)⊕ U(h).

Since h is commutative, we can identify U(h) with S(h), the symmetric algebra on the
vectorspace h = Cc ⊕ Cd0. Let P : U(Vir) → S(h) = U(h) be the projection, and let
e(C,h) : S(h)→ C be the algebra homomorphism determined by

e(C,h)(c) = C e(C,h)(d0) = h
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Then we have for x ∈ U(Vir),

P (x)v = e(C,h)(P (x))v

Since M(C, h) is a highest weight representation, we have

〈v|n−U(Vir)v + U(Vir)n+v〉 = 〈n+v|U(Vir)v〉+ 〈v|U(Vir)n+v〉 = 0

Therefore
〈xv|yv〉 = 〈v|ω̃(x)yv〉 = 〈v|P (ω̃(x)y)v〉 = e(C,h)

(
P (ω̃(x)y)

)
. (30)

This shows that the form is unique, if it exists.
To show existence, we recall the construction of M(C, h) as a quotient of U(Vir) by

a left ideal I(C, h). Clearly P (n+) = P (n−) = 0, but we also have

e(C,h)(P (c− C · 1)) = e(C,h)(c− C · 1) = C − C = 0

e(C,h)(P (d0 − h · 1)) = e(C,h)(d0 − h · 1) = h− h = 0

where 1 = 1U(Vir). Note further that

P (xy) = P (x)y P (yx) = yP (x)

for x ∈ U(Vir), y ∈ U(h). Combining these observations we deduce

e(C,h)(P (x)) = 0 for x ∈ I(C, h) or x ∈ ω̃(I(C, h)). (31)

It is now clear that we may take (30) as the definition of the form, because if xv = x′v
and yv = y′v for some x, x′, y, y′ ∈ U(Vir) then x− x′, y − y′ ∈ I(C, h) so that

〈xv|yv〉 − 〈x′v|y′v〉 = 〈(x− x′)v|yv〉+ 〈x′v|(y − y′)v〉 =

= 〈ω̃(y)(x− x′)v|v〉+ 〈v|ω̃(x′)(y − y′)v〉 =

= 0.

It is easy to see that the form is Hermitian. Contravariance is also clear:

〈xyv|zv〉 = e(C,h)
(
P (ω̃(xy)z)

)
= e(C,h)

(
P (ω̃(y)ω̃(x)z)

)
= 〈yv|ω̃(x)zv〉.

Finally, we have
〈v|v〉 = e(C,h)(P (1 · 1)) = 1,

which concludes the proof of part a).
b) If x ∈M(C, h)h+k and y ∈M(C, h)h+l with k 6= l we have

(k − l)〈x|y〉 = 〈(h+ k)x|y〉 − 〈x|(h+ l)y〉 = 〈d0x|y〉 − 〈x|d0y〉 = 〈x|ω(d0)y − d0y〉 = 0
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since ω(d0) = d0, and therefore we must have 〈x|y〉 = 0.
c) It is easy to see, using contravariance of the form, that ker〈·|·〉 is a Vir sub-

representation of M(C, h). Since 〈v|v〉 = 1, it is a proper subrepresentation. Hence
ker〈·|·〉 ⊆ J(C, h).

Conversely, suppose x ∈ U(Vir) is such that xv ∈ J(C, h), but xv /∈ ker〈·|·〉. Then
there is a y ∈ U(Vir) such that

0 6= 〈yv|xv〉 = e(C,h)(P (ω̃(y)x)).

Since J(C, h) is a representation of Vir, we have found z = ω̃(y)xv ∈ J(C, h) with
a nonzero component in M(C, h)h = Cv. Therefore, using Lemma 1, we must have
v ∈ J(C, h). This contradicts J(C, h) 6= M(C, h) and the proof is finished.

Corollary 10. If C, h ∈ R, then V(C,h)=M(C,h)/J(C,h) carries a unique contravariant
Hermitian form 〈·|·〉 such that 〈v + J(C, h)|v + J(C, h)〉 = 1.

From now on we will always assume that C, h ∈ R so that the Shapovalov form is
always defined.

4 Unitarity and degeneracy of representations

The unique irreducible highest weight representation V (C, h) with highest weight (C, h)
is called a degenerate representation if V (C, h) 6= M(C, h). In this section we will
investigate for which highest weights (C, h) the representation V (C, h) is degenerate.

We will also study unitary highest weight representations. From the preceeding
section we can draw some simple but important conclusions.

Proposition 11. There exists at most one unitary highest weight representation of Vir
for a given highest weight (C, h), namely V (C, h).

Proof. Use Proposition 6, and Proposition 8 part c).

Thus to study unitary highest weight representations, it is enough to consider those
of the irreducible representations V (C, h) which are unitary. This leads to the question:
For which highest weights (C, h) is V (C, h) unitary? We have the following preliminary
result.

Proposition 12. If V (C, h) is unitary, then C ≥ 0 and h ≥ 0.

Proof. A necessary condition for unitarity of V (C, h) is that

cn = 〈d−nv|d−nv〉 ≥ 0 for n > 0.
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Since the form is contravariant we have

cn = 〈v|dnd−nv〉 = 〈v|
(
d−ndn + 2nd0 +

n3 − n
12

c
)
v〉 = 2nh+

n3 − n
12

C

Since c1 = 2h, we must have h ≥ 0. Also, if n is sufficently large, cn has the same sign
as C, so C ≥ 0 is also necessary.

To give a more detailed answer, we consider the matrix S(C, h) of the Shapovalov
form on M(C, h).

S(C, h) =
(
〈d−is . . . d−i1v|d−jt . . . d−j1v〉

)
1≤i1≤...≤is, 1≤j1≤...≤jt

SinceM(C, h) is a direct sum of finite-dimensional pairwise orthogonal subspacesM(C, h)h+n,
n ≥ 0, the matrix S(C, h) is also a direct sum of matrices Sn(C, h), n ≥ 0, where Sn(C, h)
is the matrix of the Shapovalov form restricted to M(C, h)h+n.

Sn(C, h) =
(
〈d−is . . . d−i1v|d−jt . . . d−j1v〉

)
(i1,...,is),(j1,...,jt)∈P (n)

, (32)

where P (n) denotes the set of all partitions of n. We now define

detn(C, h) = detSn(C, h) (33)

A necessary and sufficient condition for the degeneracy of V (C, h) is that J(C, h) 6= 0,
and this happens if and only if detn(C, h) = 0 for some n ≥ 0. If V (C, h) is unitary,
Sn(C, h) must be positive semi-definite for each n ≥ 0, and thus detn(C, h) must be
non-negative for n ≥ 0.

The following proposition shows that the representation theory for Vir is more in-
teresting than that of the Witt algebra.

Proposition 13 (Gomes). If C = 0, the only unitary highest weight representation π
with heighest weight (C, h) is the trivial one which satisfies π(dn) = 0 for all n ∈ Z.

Proof. Suppose V (0, h) is unitary, and let N ∈ Z≥0. Then it is necessary that S2N(0, h)
is positive semi-definite. In particular the matrix[

〈d−2Nv|d−2Nv〉 〈d2−Nv|d−2Nv〉
〈d−2Nv|d2−Nv〉 〈d2−Nv|d2−Nv〉

]
(34)

must be positive semi-definite. Since C = 0 we have

〈d−2Nv|d−2Nv〉 = 〈v|(4Nd0 +
(2N)3 − 2N

12
c)v〉 = 4Nh,
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〈d2−Nv|d−2Nv〉 = 〈d−2Nv|d2−Nv〉 = 〈v|d2Nd2−Nv〉 =

= 〈v|(3NdNd−N + d−N3NdN)v〉 =

= 3N · 2Nh =

= 6N2h,

〈d2−Nv|d2−Nv〉 = 〈d−Nv|(2Nd0d−N + d−N2Nd0)v〉 =

= 2N(h+N + h)〈d−Nv|d−Nv〉 =

= (4Nh+ 2N2) · 2Nh =

= 8N2h2 + 4N3h.

Consequently the matrix (34) has the determinant

(4Nh)(8N2h2 + 4N3)− (6N2h)2 = 32N3h3 + 16N4h2 − 36N4h2 = 4N3h2(8h− 5N),

which is negative for sufficently large N , unless h = 0. By uniqueness, V (0, 0) must be
the trivial one-dimensional representation.

Our next goal is to find a general formula for detn(C, h). For this we will need a
series of lemmas.

4.1 Some lemmas

The universal enveloping algebra U(n−) of n− has a natural filtration

U(n−) =
∞⋃
k=0

U(n−)(k) (35)

U(n−)(0) ⊆ U(n−)(1) ⊆ . . . (36)

U(n−)(k)U(n−)(l) ⊆ U(n−)(k+l) for k, l ∈ Z≥0 (37)

where
U(n−)(k) =

∑
0≤r≤k

(n−)r =
∑

0≤r≤k
jr≥...j1≥1

Cd−jr . . . d−j1 . (38)

For simplicity we will also use the notation

K(s) = U(Vir)n+ + U(n−)(s−1)d0 + U(n−)(s−1)c+ U(n−)(s) for s ≥ 1,

and we note that
U(n−)(t)K(s) ⊆ K(t+s) for t ≥ 0, s ≥ 1, (39)

K(s) ⊆ K(s+1) for s ≥ 1. (40)
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Lemma 14. Let i ≥ 1 and js, . . . , j1 ≥ 1 be integers, where s ≥ 1. Then

did−js . . . d−j1 ∈ K(s). (41)

Furthermore, if i /∈ {j1, . . . , js}, then (41) can be replaced by the stronger conclusion

did−js . . . d−j1 ∈ U(Vir)n+ + U(n−)(s−2)d0 + U(n−)(s−2)c+ U(n−)(s), (42)

where U(n−)(−1) is to be interpreted as zero.

Proof. We mainly consider (41), the case (42) being analogous. We use induction on s.
If s = 1, we have

did−j1 = d−j1di + (i+ j1)di−j1 + δi,−j1
i3 − i

12
c.

Now d−j1di ∈ U(Vir)n+ and δi,−j1 = 0 since i, j1 ≥ 1. For the middle term (i + j1)di−j1
there are three cases. First, if i < j1, then (i+ j1)di−j1 ∈ U(n−)(1) = U(n−)(s). Secondly,
if i > j1, then (i+ j1)di−j1 ∈ U(Vir)n+. Finally, if i = j1 (this case does not occur when
proving (42)), then (i+ j1)di−j1 = (i+ j1)d0 ∈ U(n−)(0)d0 = U(n−)(s−1)d0.

For the induction step, first note that

did−js . . . d−j1 = d−jsdid−js−1 . . . d−j1 + [di, d−js ]d−js−1 . . . d−j1 .

Using the induction hypothesis and (39) we have

d−jsdid−js−1 . . . d−j1 ∈ U(n−)(1)K(s−1) ⊆ K(s).

Therefore it is enough to show that

[di, d−js ]d−js−1 . . . d−j1 ∈ K(s). (43)

This is clear if i− js < 0, since U(n−)s ⊆ K(s). But (43) is also true if i− js > 0, using
the induction hypothesis and (40). It remains to consider the case i = js (this case does
not occur when proving (42)). Since [di, d−i] = 2id0 + i3−i

12
c, we get

[di, d−js ]d−js−1 . . . d−j1 = (2id0 +
i3 − i

12
c)d−js−1 . . . d−j1 =

=
i3 − i

12
d−js−1 . . . d−j1c+ 2id−js−1 . . . d−j1d0

+ 2i(js−1 + . . .+ j1)d−js−1 . . . d−j1 .

Each of these terms belongs to the desired linear space K(s).



4.1 Some lemmas 111

In the next lemmas, 〈·|·〉 will denote the Shapovalov form on M(C, h). We will fix
C ∈ R, and consider an expression of the form

〈d−is . . . d−i1v|d−jt . . . d−j1v〉

as a polynomial in h. We will use the notation degh p for the degree of p as a polynomial
in h.

Lemma 15. Suppose we have some integers s, t ≥ 1 and it−1, . . . , i1 ≥ 1. If x ∈ K(s),
then

degh〈d−it−1 . . . d−i1v|xv〉 ≤ min{t, s}. (44)

Proof. To show (44), we use induction on t+ s. If t+ s = 2, then t = s = 1 and we have

xv = αd0v + βcv + (γd−k + δ)v = (αh+ βC + δ)v + γd−kv

for some α, β, γ, δ ∈ C and k ≥ 1. Thus

〈v|xv〉 = αh+ βC + δ.

The degree of this as a polynomial in h is less than or equal to 1 = min{t, s}.
The induction step can be carried out by noting that xv is a linear combination of

elements of the form

w1 = d−kr−1 . . . d−k1d0v = hd−kr−1 . . . d−k1v,

w2 = d−kr−1 . . . d−k1cv = Cd−kr−1 . . . d−k1v,

w3 = d−kr . . . d−k1v,

where r ≤ s. By Lemma 14 we have

dit−1d−kr−1 . . . d−k1 ∈ K(r−1) ⊆ K(s−1)

dit−1d−kr . . . d−k1 ∈ K(r) ⊆ K(s)

and therefore,

degh〈d−it−1 . . . d−i1v|w1〉 = degh

(
h · 〈d−it−2 . . . d−i1v|dit−1d−kr−1 . . . d−k1v〉

)
≤

≤ 1 + min{t− 1, s− 1} ≤ min{t, s}

by the induction hypothesis. Similarly,

degh〈d−it−1 . . . d−i1 |w2〉 = degh

(
C · 〈d−it−2 . . . d−i1v|dit−1d−kr−1 . . . d−k1v〉

)
≤

≤ min{t− 1, s− 1} ≤ min{t, s}
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Finally,

degh〈d−it−1 . . . d−i1|w3〉 = degh〈d−it−2 . . . d−i1v|dit−1d−kr . . . d−k1v〉 ≤
≤ min{t− 1, s} ≤ min{t, s}

This proves the induction step.

Corollary 16. If it, . . . , i1 ≥ 1 and js, . . . , j1 ≥ 1, where s, t ≥ 1, then

degh〈d−it . . . d−i1v|d−js . . . d−j1v〉 ≤ min{t, s}. (45)

Proof. Take x = ditd−js . . . d−j1 which is in K(s) by Lemma 14.

We now consider the case s = t.

Lemma 17. Let t ≥ 1 be an integer.

i) If it ≥ . . . ≥ i1 ≥ 1 then

degh〈d−it . . . d−i1v|d−it . . . d−i1v〉 = t. (46)

and the coefficient of ht is positive.

ii) If it ≥ . . . ≥ i1 ≥ 1 and jt ≥ . . . ≥ j1 ≥ 1 but (it, . . . , i1) 6= (jt, . . . , j1), then

degh〈d−it . . . d−i1v|d−jt . . . d−j1v〉 < t (47)

Proof. We show part i) by induction on t. For t = 1 we have

di1d−i1v = 2i1d0v +
i31 − i1

12
cv = 2i1hv +

i31 − i1
12

Cv

and therefore

〈d−i1v|d−i1v〉 = 〈v|di1d−i1v〉 = 〈v|2i1hv +
i31 − i1

12
Cv〉 = 2i1h+

i31 − i1
12

C

For the induction step, use the formula

ditd−it . . . d−i1v =
t∑

r=1

d−it . . . d−ir+1 [dit , d−ir ]d−ir−1 . . . d−i1v

and note that it − ir ≥ 0. We consider each term separately. If r is such that ir = it,
then

d−it . . . d−ir+1 [dit , d−ir ]d−ir−1 . . . d−i1v =

= d−it . . . d−ir+1

(
2itd0 +

i3t − it
12

c
)
d−ir−1 . . . d−i1v =

=
(

2it(h+ ir−1 + . . .+ i1) +
i3t − it

12
C
)
d−it . . . d−ir+1d−ir−1 . . . d−i1v.
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Thus, using the induction hypothesis,

degh〈d−it−1 . . . d−i1v|d−it . . . d−ir+1 [dit , d−ir ]d−ir−1 . . . d−i1v〉 = 1 + t− 1 = t

and the coefficient of ht is positive.
If r is such that ir < it, then by Lemma 14 we have

d−it . . . d−ir+1 [dit , d−ir ]d−ir−1 . . . d−i1 ∈ U(n−)(t−r)K(r−1) ⊆ K(t−1),

so it follows from Lemma 15 that

degh〈d−it−1 . . . d−i1v|d−it . . . d−ir+1 [dit , d−ir ]d−ir−1 . . . d−i1v〉 ≤ min{t, t− 1} = t− 1.

Thus such terms do not contribute to the highest power of h.
To show (47), we use induction on t. For t = 1 we have i1 6= j1 so 〈d−i1v|d−j1v〉 = 0,

since the eigenspaces of d0 are pairwise orthogonal. For the induction step consider the
calculation

degh〈d−it . . . d−i1v|d−jt . . . d−j1v〉 =

= degh〈d−it−1 . . . d−i1v|
t∑

p=1

d−jt . . . d−jp+1 [dit , d−jp ]d−jp−1 . . . d−j1v〉 ≤

≤ max
1≤p≤t

{degh〈d−it−1 . . . d−i1v|d−jt . . . d−jp+1 [dit , d−jp ]d−jp−1 . . . d−j1v〉}

For each p ∈ {1, . . . , t} we consider three cases. First, if it − jp < 0 then

d−jt . . . d−jp+1 [dit , d−jp ]d−jp−1 . . . d−j1 ∈ U(n−)(t−p)U(n−)(1)U(n−)(p−1) ⊆ U(n−)(t)

so that

degh〈d−it−1 . . . d−i1v|d−jt . . . d−jp+1 [dit , d−jp ]d−jp−1 . . . d−j1v〉 ≤ t− 1 < t (48)

by Corollary 16. Secondly, if it − jp > 0 then

d−jt . . . d−jp+1 [dit , d−jp ]d−jp−1 . . . d−j1 ∈ U(n−)(t−p)K(p−1) ⊆ K(t−1)

by Lemma 14, and therefore (48) holds again, using Lemma 15. For the third case,
when it − jp = 0, we have

d−jt . . . d−jp+1 [dit , d−jp ]d−jp−1 . . . d−j1v = λd−jt . . . d−jp+1d−jp−1 . . . d−j1v

where λ = 2it(h+ jp−1 + . . .+ j1) +
i3t−it
12

C. We claim now that

(it−1, . . . , i1) 6= (jt, . . . , jp+1, jp−1, . . . , j1). (49)
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Assume the contrary. Then in particular it−1 = jt, and since jt ≥ . . . ≥ j1 and it ≥
. . . ≥ i1, it = jp we get

jt ≥ . . . ≥ jp+1 ≥ jp = it ≥ it−1 = jt.

Thus all inequalities must be equalities. Hence

jp+1 = it−1 ≥ . . . ≥ ip = jp+1.

Again all inequalities must be equalities, and consequently

jk = il whenever k, l ≥ p.

In addition we assumed that ik = jk for k < p. This contradicts (it, . . . , i1) 6= (jt, . . . , j1),
so (49) is true. Thus we can use the induction hypothesis to conclude that

degh〈d−it−1 . . . d−i1v|d−jt . . . d−jp+1 [dit , d−jp ]d−jp−1 . . . d−j1v〉 =

= 1 + degh〈d−it−1 . . . d−i1v|d−jt . . . d−jp+1d−jp−1 . . . d−j1v〉 < 1 + (t− 1) = t.

The proof is finished.

4.2 Kac determinant formula

If p and q are two complex polynomials in h, we will write

p ∼ q

if their highest degree terms coincide. In other words, p ∼ q if and only if degh(p− q) <
min{degh p, degh q}. It is easy to see that ∼ is an equivalence relation on the set of
complex polynomials in h.

Proposition 18.

detn(C, h) ∼
∏

1≤i1≤...≤it
i1+...+it=n

〈d−it . . . d−i1v|d−it . . . d−i1v〉 (50)

Proof. Let P (n) denote the set of all partitions of n, and for i ∈ P (n), let `(i) denote
the length of i. For i = (i1, . . . , is), j = (j1, . . . , jt) ∈ P (n), define

Aij = 〈d−is . . . d−i1v|d−jt . . . d−j1v〉

Then a standard formula for the determinant gives

detn(C, h) =
∑

σ∈SP (n)

(−1)sgnσ
∏

i∈P (n)

Aiσ(i). (51)
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We will show that the term with σ = id has strictly higher h-degree than the other
terms in the sum. From Lemma 17 part i) follows that deghAii = `(i) for all i ∈ P (n).
Therefore, we have

degh
∏

i∈P (n)

Aiσ(i) =
∑
i∈P (n)

`(i) when σ = id . (52)

It follows from Corollary 16 that

deghAiσ(i) ≤ min{`(i), `(σ(i))},

for any σ ∈ SP (n) and all i ∈ P (n). Also, by trivial arithmetic,

min{`(i), `(σ(i))} ≤ `(i) + `(σ(i))

2
, (53)

so for any σ ∈ SP (n), i ∈ P (n) it is true that

deghAiσ(i) ≤
`(i) + `(σ(i))

2
. (54)

But when σ 6= id, there is some j ∈ P (n) such that σ(j) 6= j. If `(σ(j)) 6= `(j), the
inequality (53) is strict for i = j. On the other hand, if `(σ(j)) = `(j), then we can use
Lemma 17 part ii) to obtain

deghAjσ(j) < `(j) =
`(j) + `(σ(j))

2

In either case we have

deghAjσ(j) <
`(j) + `(σ(j))

2
. (55)

Therefore, if we sum the inequalities (54) for all partitions i 6= j, and add (55) to the
result we get

degh
∏

i∈P (n)

Aiσ(i) =
∑
i∈P (n)

deghAiσ(i) <
∑
i∈P (n)

`(i) + `(σ(i))

2
=
∑
i∈P (n)

`(i), (56)

when σ 6= id. In the last equality we used that σ : P (n) → P (n) is a bijection. Hence,
combining (52) and (56) with (51), we obtain (50), which was to be proved.

Lemma 19. Let k ≥ 1 be an integer. Then

[dn, d
k
−n] = nkdk−1−n

(
n(k − 1) + 2d0 +

n2 − 1

12
c
)

(57)

for all n ∈ Z.
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Proof. We use induction on k. For k = 1, we have

nd0−n
(
n · 0 + 2d0 +

n2 − 1

12
c
)

= 2nd0 +
n3 − n

12
c = [dn, d−n]. (58)

For the induction step, we assume that (57) holds for k = l. Then consider the following
calculations:

[dn, d
l+1
−n ] = dnd

l+1
−n − dl+1

−n dn =

=
(
dnd

l
−n − dl−ndn

)
d−n + dl−n

(
dnd−n − d−ndn

)
=

= [dn, d
l
−n]d−n + dl−n[dn, d−n] =

= nldl−1−n
(
n(l − 1) + 2d0 +

n2 − 1

12
c
)
d−n + dl−n(2nd0 +

n3 − n
12

) =

= ndl−n
(
ln(l + 1) + (l + 1)(2d0 +

n2 − 1

12
c)
)

=

= n(l + 1)dl−n(nl + 2d0 +
n2 − 1

12
c)

This shows the induction step.

Lemma 20. Let k ≥ 1 be an integer. Then

〈dk−nv|dk−nv〉 = k!nk(2h+
n2 − 1

12
C)(2h+

n2 − 1

12
C+n) · . . . ·(2h+

n2 − 1

12
C+n(k−1))

(59)

for all n ∈ Z.

Proof. We use induction on k. For k = 1, the right hand side of (59) equals

1!n1
(
2h+

n2 − 1

12
C + n(1− 1)

)
= 2hn+

n3 − n
12

C

while the left hand side is

〈d−n|d−nv〉 = 〈v|dnd−nv〉 =

= 〈v|(d−ndn + 2nd0 +
n3 − n

12
c)v〉 =

= 〈v|(2nh+
n3 − n

12
C)v〉 =

= 2hn+
n3 − n

12
C

So (59) holds for k = 1.
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For the induction step, we suppose that (59) holds for k = l. Then we have

〈dl+1
−n v|dl+1

−n v〉 = 〈dl−nv|dndl+1
−n v〉 =

= 〈dl−nv|
(
dl+1
−n dn + n(l + 1)dl−n

(
nl + 2d0 +

n2 − 1

12
c
))
v〉 =

= n(l + 1)(nl + 2h+
n2 − 1

12
C)〈dl−nv|dl−nv〉 =

= n(l + 1)(nl + 2h+
n2 − 1

12
C) · l!nl(2h+

n2 − 1

12
C)(2h+

n2 − 1

12
C + n) · . . .

. . . · (2h+
n2 − 1

12
C + n(l − 1)) =

= (l + 1)!nl+1(2h+
n2 − 1

12
C)(2h+

n2 − 1

12
C + n) · . . . · (2h+

n2 − 1

12
C + nl)

where we used Lemma 19 in the second equality. This shows the induction step and the
proof is finished.

Corollary 21.

〈dk−nv|dk−nv〉 ∼ k!(2nh)k

Lemma 22. Let i1, . . . , is, j1, . . . js ∈ Z>0, where ip 6= iq for p 6= q. Then

〈djs−is . . . d
j1
−i1v|d

js
−is . . . d

j1
−i1v〉 ∼ 〈d

js
−isv|d

js
−isv〉 . . . 〈d

j1
−i1v|d

j1
−i1v〉. (60)

Proof. We use induction on
∑

k jk. If
∑

k jk = 1, then we must have s = 1 so (60) is
trivial.

To carry out the induction step, we will use that

〈djs−is . . . d
j1
−i1v|d

js
−is . . . d

j1
−i1v〉 = 〈djs−1−is . . . dj1−i1v|disd

js
−is . . . d

j1
−i1v〉.

First we use the Leibniz rule to obtain

disd
js
−is . . . d

j1
−i1v =

( js∑
p=1

djs−p−is [dis , d−is ]d
p−1
−is

)
d
js−1

−is−1
. . . dj1−i1v

+ djs−isdisd
js−1

−is−1
. . . dj1−i1v =

=
( js∑
p=1

2is
(
h+ (p− 1)is + js−1is−1 + . . .+ j1i1

)
+
i3s − is

12
C
)

· djs−1−is d
js−1

−is−1
. . . dj1−i1v + djs−isdisd

js−1

−is−1
. . . dj1−i1v =

= (2isjsh+ A) · djs−1−is d
js−1

−is−1
. . . dj1−i1v + djs−isdisd

js−1

−is−1
. . . dj1−i1v,
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where A is a constant independent of h. Consequently

〈djs−is . . . d
j1
−i1v|d

js
−is . . . d

j1
−i1v〉 ∼ 2isjsh〈djs−1−is . . . dj1−i1v|d

js−1
−is . . . dj1−i1v〉

+ 〈djs−1−is . . . dj1−i1v|d
js
−isdisd

js−1

−is−1
. . . dj1−i1v〉. (61)

By the induction hypothesis,

2isjsh〈djs−1−is . . . d−i1
j1v|djs−1−is . . . dj1−i1v〉 ∼
∼ 2isjsh〈djs−1−is v|d

js−1
−is v〉 · 〈d

js−1

−is−1
v|djs−1

−is−1
v〉 . . . 〈dj1−i1v|d

j1
−i1v〉 ∼

∼ 2isjsh(js − 1)!(2ish)js−1 · 〈djs−1

−is−1
v|djs−1

−is−1
v〉 . . . 〈dj1−i1v|d

j1
−i1v〉 ∼

∼ 〈djs−isv|d
js
−isv〉 . . . 〈d

j1
−i1v|d

j1
−i1v〉. (62)

where we used Corollary 21 two times. The result will now follow from (61)-(62) if we
can show that

degh〈d
js−1
−is . . . dj1−i1v|d

js
−isdisd

js−1

−is−1
. . . dj1−i1v〉 < j1 + . . .+ js. (63)

Since is 6= ip for p < s we have by Lemma 14 that

djs−isdisd
js−1

−is−1
. . . dj1−i1 ∈ U(Vir)n+ + U(n−)(k−2)d0 + U(n−)(k−2)c+ U(n−)(k),

where k = j1 + . . .+ js. If x ∈ U(Vir)n+, then xv = 0. If x ∈ U(n−)(k−2), then

degh〈d
js−1
−is . . . dj1−i1v|xd0v〉 = 1 + degh〈d

js−1
−is . . . dj1−i1v|xv〉 ≤ 1 + j1 + . . .+ js − 2,

degh〈d
js−1
−is . . . dj1−i1v|xcv〉 = degh〈d

js−1
−is . . . dj1−i1v|xv〉 ≤ j1 + . . .+ js − 2,

by Corollary 16. Finally, if y ∈ U(n−)(k), then

degh〈d
js−1
−is . . . dj1−i1v|yv〉 ≤ j1 + . . .+ js − 1,

again by Corollary 16. These inequalities finishes the proof of (63) and we are done.

Lemma 23.

detn(C, h) ∼
∏

r,s∈Z>0
1≤rs≤n

〈ds−rv|ds−rv〉m(r,s),

where m(r, s) is the number of partitions of n in which r appears exactly s times.

Proof. Use Proposition 18 and Lemma 22.
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Proposition 24. For fixed C, detn(C, h) is a polynomial in h of degree∑
r,s∈Z>0
1≤rs≤n

p(n− rs).

The coefficient K of the highest power of h is given by

K =
∏

r,s∈Z>0
1≤rs≤n

((2r)ss!)m(r,s), (64)

and m(r, s) can be calculated in terms of the partition function as follows:

m(r, s) = p(n− rs)− p(n− r(s+ 1)). (65)

Proof. We first show (65). It is easy to see that the number of partitions of n in which
r appears at least s times is p(n− rs). But the number of partitions in which r appears
exactly s times is equal to the number those which appears at least s times minus the
number of those that appears at least s+ 1 times. Thus (65) is true.

From Lemma 23 and Corollary 21 follows that the coefficient of the highest power
of h is equal to (64) and that

degh detn(C, h) =
∑

r,s∈Z>0
1≤rs≤n

sm(r, s) =

=
∑

1≤r≤n

[n/r]∑
s=1

s
(
p(n− rs)− p(n− r(s+ 1))

)
=

=
∑

1≤r≤n

[n/r]∑
s=1

(
p(n− rs) + (s− 1) · p(n− rs)− s · p(n− r(s+ 1))

)
=

=
∑

1≤r≤n

[n/r]∑
s=1

(
p(n− rs)− [n/r] · p(n− r([n/r] + 1))

)
=

=
∑

r,s∈Z>0
1≤rs≤n

p(n− rs)

Lemma 25. Let V be a linear space of dimension n, and let A ∈ End(V )[t]. Then
detA(t) is divisible by tk, where k is the dimension of kerA(0).
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Proof. Choose a basis {e1, . . . ek} for the subspace kerA(0) of V and extend it to a basis
B = {e1, . . . ek, ek+1, . . . en} for V . Write

A(t) = A0 + A1t+ . . . Amt
m,

where Ai ∈ End(V ). Let M0 and M(t) be the matrices of A0 and A(t) respectively in
the basis B. Since M0ei = A(0)ei = 0 for 1 ≤ i ≤ k, the first k columns of M0 in the
basis {e1, . . . , en} are zero, and therefore the first k columns of M(t) are divisible by t.
The result follows.

Lemma 26. If detn(C, h) has a zero at h = h0, then detn(C, h) is divisible by

(h− h0)p(n−k)

where k is the smallest positive integer for which detk(C, h) vanishes at h = h0.

Proof. Set Jn(C, h) = J(C, h) ∩M(C, h)h+n = kerSn(C, h). For m ≥ 1, we have

detm(C, h0) = 0 ⇐⇒ Jm(C, h0) 6= 0.

Since detk(C, h0) = 0 we can thus pick u ∈ Jk(C, h0), u 6= 0. This u must satisfy

dnu = 0 for n > 0,

since otherwise we would have for any w ∈M(C, h0),

〈w|dnu〉 = 〈d−nw|u〉 = 0,

because u ∈ J(C, h0). But 0 6= dnu ∈M(C, h0)h0+k−n:

d0dnu = [d0, dn]u+ dnd0u = (h0 + k − n)dnu

and this contradicts the minimality of k. Then U(Vir)u is a subrepresentation of
J(C, h0). The subspace U(Vir)u ∩M(C, h)h+n is spanned by the elements

d−is . . . d−i1u, is ≥ . . . i1 ≥ 1, is + . . .+ i1 = n− k.

These are also linearly independent, since U(Vir) has no divizors of zero. Therefore
Jn(C, h0) has a subspace of dimension p(n − k), so Sn(C, h0) has a kernel of at least
dimension p(n− k). The result now follows from Lemma 25.

We will need the following fact, which we will not prove.

Fact 27. detn(C, h) has a zero at h = hr,s(C), where

hr,s(C) =
1

48

(
(13− C)(r2 + s2) +

√
(C − 1)(C − 25)(r2 − s2)− 24rs− 2 + 2C

)
, (66)

for each pair (r, s) of positive integers such that 1 ≤ rs ≤ n.
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The following is the main theorem of this article.

Theorem 28 (Kac determinant formula).

detn(C, h) = K
∏

r,s∈Z>0
1≤rs≤n

(h− hr,s(C))p(n−rs), (67)

where
K =

∏
r,s∈Z>0
1≤rs≤n

((2r)ss!)m(r,s) (68)

and
m(r, s) = p(n− rs)− p(n− r(s+ 1))

and hr,s is given by (66).

Proof. From Fact 27 follows that detn(C, h) has a zero at h = hr,s(C) for each r, s ∈ Z>0

satisfying 1 ≤ rs ≤ n. Using Lemma 26 we deduce that detn(C, h) is divisible by
(h − hr,s(C))p(n−rs) for each r, s ∈ Z>0 with 1 ≤ rs ≤ n. Hence detn(C, h) is divisible
by the right hand side of (67), as polynomials in h. But we know from Proposition 24
that the degree in h of the determinant detn(C, h) equals the degree in h of the right
hand side of (67), and that the coefficient of the highest power of h is given by (68).
Therefore equality holds in (67), and the proof is finished.

If we set
ϕr,r(C) = h− hr,r(C), (69)

and
ϕr,s(C) = (h− hr,s(C))(h− hs,r(C)), (70)

for r 6= s, then (67) can be written

detn(C, h) = K
∏

r,s∈Z>0
s≤r

1≤rs≤n

ϕr,s(C)p(n−rs). (71)

We will also use the following notation

αr,s =
1

48

(
(13− C)(r2 + s2)− 24rs− 2 + 2C

)
=

=
1

4
(r − s)2 − 1

48
(C − 1)(r2 + s2 − 2), (72)

βr,s =
1

48

√
(C − 1)(C − 25)(r2 − s2). (73)
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Then
hr,s = αr,s + βr,s.

Note that α is symmetric in its indices, and β is antisymmetric. Therefore

ϕr,s = (h− hr,s)(h− hs,r) = h2 − 2αr,sh+ α2
r,s − β2

r,s, (74)

for r 6= s.

4.3 Consequences of the formula

Let us now return to the questions we asked at the beginning of Section 4.

Proposition 29. a) V (1, h) = M(1, h) if and only if h 6= m2/4 for all m ∈ Z.
b) V (0, h) = M(0, h) if and only if h 6= (m2 − 1)/24 for all m ∈ Z.

Proof. a) Putting C = 1 in (66) we get

hr,s(1) =
1

48

(
12(r2 + s2)− 24rs

)
=

(r − s)2

4
.

Thus, using (67) we obtain

detn(1, h) = K
∏

r,s∈Z>0
1≤rs≤n

(h− (r − s)2

4
)p(n−rs).

Therefore, detn(1, h) 6= 0 for all n ∈ Z if and only if h 6= m2/4 for all m ∈ Z.
b) When C = 0 we obtain

hr,s(0) =
1

48

(
13(r2 + s2) + 5(r2 − s2)− 24rs− 2

)
=

=
9r2 + 4s2 − 12rs− 1

24
=

=
(3r − 2s)2 − 1

24
.

Hence by formula (67) we have

detn(0, h) = K
∏

r,s∈Z>0
1≤rs≤n

(h− (3r − 2s)2 − 1

24
)p(n−rs).

This shows that detn(0, h) 6= 0 for all n ∈ Z if and only if h 6= (m2 − 1)/24 for all
m ∈ Z.
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We need the following fact which we will not prove.

Fact 30. V (1, 3) is unitary.

Then we have the following proposition.

Proposition 31. a) V (C, h) = M(C, h) for C > 1, h > 0.
b) V (C, h) is unitary for C ≥ 1 and h ≥ 0.

Proof. a) It will be enough to show that detn(C, h) > 0 for all C > 1, h > 0 and
n ≥ 1. We prove in fact that each factor ϕr,s of the product (71) is positive. For s = r,
1 ≤ r ≤ n we have

ϕr,r(C) = h− 1

48

(
(13− c)2r2 − 24r2 − 2 + 2C

)
= h+

1

24
(C − 1)(r2 − 1) > 0,

if C > 1 and h > 0. For r 6= s we have

ϕr,s = h2 − 2αr,sh+ α2
r,s − β2

r,s =

= h2 − 1

2
(r − s)2h+

1

24
(C − 1)(r2 + s2 − 2)h

+
1

16
(r − s)4 − 2

1

4 · 48
(r − s)2(C − 1)(r2 + s2 − 2) +

1

482
(C − 1)2(r2 + s2 − 2)2

− 1

482
(C − 1)(C − 25)(r2 − s2)2 =

=
(
h− (r − s)2

4

)2
+

1

24
(C − 1)(r2 + s2 − 2)h

+
1

482
(C − 1)2

(
(r2 + s2 − 2)2 − (r2 − s2)2

)
+ (C − 1)

( 24

482
(r2 − s2)2 − 1

2 · 48
(r − s)2(r2 + s2 − 2)

)
=

=
(
h− (r − s)2

4

)2
+

1

24
(C − 1)(r2 + s2 − 2)h

+
1

482
(C − 1)2

(
2r2s2 − 4(r2 + s2) + 4 + 2r2s2

)
+

1

96
(C − 1)(r − s)2

(
r2 + 2rs+ s2 − r2 − s2 + 2

)
=

=
(
h− (r − s)2

4

)2
+

1

24
(C − 1)(r2 + s2 − 2)h

+
1

12 · 48
(C − 1)2(r2 − 1)(s2 − 1)

+
1

48
(C − 1)(r − s)2(rs+ 1).
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This expression is strictly positive when C > 1 and h > 0. Therefore, when C > 1, h > 0,
we have detn(C, h) > 0 for all n > 0, which proves part a).

b) Let C ≥ 1 and h ≥ 0 be arbitrary. Since R≥1 × R≥0 is pathwise connected, we
can choose a path π from (1, 3) to (C, h), i.e. a continuous function

π : [0, 1]→ R≥1 × R≥0,

such that
p(0) = (1, 3) and p(1) = (C, h).

Moreover, this path can be chosen so that the image of the open interval (0, 1) is con-
tained in the open quadrant R>1 × R>0.

Let n ∈ Z≥0, and let

q(x, t) = an(x)tp(n) + . . .+ a0(x) = det(Sn(π(x))− tI)

be the characteristic polynomial of Sn(π(x)), the matrix of the Shapovalov form at level
n on the Verma module with highest weight π(x). Since Sn(π(x)) is Hermitian, each
root of its characteristic equation is real. For x ∈ [0, 1], we denote the roots by λj(x),
j = 1, . . . , p(n) such that

λ1(x) ≤ . . . ≤ λp(n)(x) for all x ∈ [0, 1].

By a theorem on roots of polynomial equations, the roots are continuous functions of
the coefficients. Thus, since the coefficients ai in this case depend continuously on x,
the roots λj(x) of the characteristic equation of Sn(π(x)) are continuous functions of
x ∈ [0, 1]. By the proof of part a) and the choice of π, we have det

(
Sn(π(x))

)
6= 0 for

x ∈ (0, 1). By Proposition 29 part a) we also have det(Sn(π(0))) = det(Sn(1, 3)) 6= 0,
since 3 6= m2/4 for all integers m. Thus none of the roots λj(x) can be zero when x < 1.
From Fact 30 follows that λj(0) > 0 for j = 1, . . . , p(n), so using the intermediate value
theorem we obtain λj(x) > 0 for j = 1, . . . , p(n) and x ∈ [0, 1). Hence λj(1) ≥ 0 for
j = 1, . . . , p(n). By spectral theory there is a unitary matrix U such that

Ū tSn(π(1))U = U−1Sn(π(1))U = diag(λj(1)),

which shows that Sn(π(1)) = Sn(C, h) is positive semi-definite for any n ∈ Z≥0. Thus
V (C, h) is unitary.

4.4 Calculations for n = 3

In this section we calculate det3(C, h) first by hand, and then by using Kac determinant
formula.
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4.4.1 By hand

We have

det3(C, h) =

∣∣∣∣∣∣
〈d−3v|d−3v〉 〈d−3v|d−2d−1v〉 〈d−3v|d3−1v〉
〈d−2d−1v|d−3v〉 〈d−2d−1v|d−2d−1v〉 〈d−2d−1v|d3−1v〉
〈d3−1v|d−3v〉 〈d3−1v|d−2d−1v〉 〈d3−1v|d3−1v〉

∣∣∣∣∣∣ .
We calculate the entries:

〈d−3v|d−3v〉 = 〈v|(6d0 +
33 − 3

12
c)v〉 =

= 6h+ 2C

〈d−2d−1v|d−3v〉 = 〈d−1v|5d−1v〉 =

= 10h

〈d3−1v|d−3v〉 = 〈d2−1v|4d−2v〉 =

= 4〈d−1v|3d−1v〉 =

= 24h

〈d−2d−1v|d−2d−1v〉 = 〈d−1v|(4d0 +
23 − 2

12
c)d−1v + d−23d1v〉 =

= (4(h+ 1) + C/2)2h =

= 8h2 + (C + 8)h

〈d3−1v|d−2d−1v〉 = 〈d2−1v|3d−1d−1v + d−22d0v〉 =

= 3〈d−1v|2d0d−1v + d−12d0v〉+ 2h〈d−1v|3d−1v〉 =

= 6(h+ 1)2h+ 6h · 2h+ 6h · 2h =

= 36h2 + 12h

〈d3−1v|d3−1v〉 = 〈d2−1v|2d0d2−1v + d−12d0d−1v + d2−12d0v〉 =

= 2(h+ 2 + h+ 1 + h)〈d−1v|2d0d−1v + d−12d0v〉 =

= 6(h+ 1) · 2(h+ 1 + h) · 2h =

= 24h(2h2 + 3h+ 1) =

= 48h3 + 72h2 + 24h
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Thus the determinant is equal to

det3(C, h) =

∣∣∣∣∣∣
6h+ 2C 10h 24h

10h 8h2 + (C + 8)h 36h2 + 12h
24h 36h2 + 12h 48h3 + 72h2 + 24h

∣∣∣∣∣∣ =

= 48h2

∣∣∣∣∣∣
3h+ C 10h 12h

5 8h+ C + 8 18h+ 6
1 3h+ 1 2h2 + 3h+ 1

∣∣∣∣∣∣ =

= 48h2
(

12h
(
15h+ 5− (8h+ C + 8)

)
− (18h+ 6)

(
(3h+ C)(3h+ 1)− 10h

)
+ (2h2 + 3h+ 1)

(
(3h+ C)(8h+ C + 8)− 50h

))
=

= 48h2
(

84h2 − (12C + 36)h

− (18h+ 6)(9h2 + (3C − 7)h+ C)

+ (2h2 + 3h+ 1)(24h2 + (11C − 26)h+ C2 + 8C)
)

=

= 48h2
(

84h2 − (12C + 36)h

−
(
162h3 + (54C − 72)h2 + (36C − 42)h+ 6C

)
+ 48h4 + (22C + 20)h3 + (2C2 + 49C − 54)h2

+ (3C2 + 35C − 26)h+ C2 + 8C =

= 48h2
(

48h4 + (22C − 142)h3 + (2C2 − 5C + 102)h2

+ (3C2 − 13C − 20)h+ C2 + 2C
)
. (75)

4.4.2 Using the formula

To use the determinant formula, we first calculate the coefficient K for n = 3. The
partitions of 3 are (3), (2, 1) and (1, 1, 1). Thus

K = ((2 · 1)11!)1 · ((2 · 1)22!)0 · ((2 · 2)11!)1 · ((2 · 1)33!)1 · ((2 · 3)11!)1 =

= 2 · 4 · 8 · 6 · 6 = 482.

By (71) we now have

det3(C, h) = 482ϕ2
1,1ϕ2,1ϕ3,1. (76)

First we have

ϕ1,1(C) = h− h1,1(C) = h. (77)
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We will use the notation introduced in (73)-(72). Then

α2,1 =
1

4
(2− 1)2 − 3

48
(C − 1) =

5

16
− 1

16
C,

α2
2,1 =

1

162
C2 − 10

162
C +

25

162
,

β2
2,1 =

9

482
(C − 1)(C − 25) =

1

162
C2 − 26

162
C +

25

162
.

Hence, using (74),

ϕ2,1(C) = h2 + (
1

8
C − 5

8
)h+

1

16
C. (78)

Also,

α3,1 =
1

4
(3− 1)2 − 8

48
(C − 1) =

7

6
− 1

6
C,

α2
3,1 =

1

36
C2 − 14

36
C +

49

36
,

β2
3,1 =

64

482
(C − 1)(C − 25) =

1

36
C2 − 26

36
C +

25

36
.

Therefore,

ϕ3,1(C) = h2 + (
1

3
C − 7

3
)h+

1

3
C +

2

3
. (79)

Consequently, using (76) we have

det3(C, h) = 482h2
(
h2 + (

1

8
C − 5

8
)h+

1

16
C
)(
h2 + (

1

3
C − 7

3
)h+

1

3
C +

2

3

)
=

= 48h2
(
16h2 + (2C − 10)h+ C

)(
3h2 + (C − 7)h+ C + 2

)
=

= 48h2
(
48h4 + (16C − 112 + 6C − 30)h3

+ (16C + 32 + 2C2 − 14C − 10C + 70 + 3C)h2

+ (2C2 + 4C − 10C − 20 + C2 − 7C)h+ C2 + 2C
)

=

= 48h2
(
48h4 + (22C − 142)h3 + (2C2 − 5C + 102)h2

+ (3C2 − 13C − 20)h+ C2 + 2C
)
.

This coincides with (75).

5 The centerless Ramond algebra

Let C[x, y, z] be the commutative associative algebra of polynomials in three indetermi-
nates x, y, z. Form the ideal I generated by the two elements xy − 1 and z2. Let

A = C[x, y, z]/I
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denote the quotient algebra. We will denote the images of x, y, and z under the canonical
projection C[x, y, z]→ A by t, t−1 and ε respectively. Then we have

t−1t = tt−1 = 1 ε2 = 0.

The algebra A can also be thought of as the tensor product algebra of C[t, t−1] with the
exterior algebra Λ(Cε) on a one-dimensional linear space.

We have a Z2-grading
A = A0 ⊕ A1, (80)

AiAj ⊂ Ai+j, (81)

defined by
A0 = C[t, t−1], A1 = C[t, t−1]ε.

Since A2
1 = 0, A can also be thought of as a supercommutative algebra:

ab = (−1)|a||b|ba for a, b ∈ A0 ∪ A1,

where |a| ∈ Z2 denotes the degree of a homogenous element a ∈ A0 ∪ A1.
For n ∈ Z we define the linear operators Ln, Fn on A by

Ln = −tn+1 d

dt
− n

2
tnε

d

dε
,

Fn = itn+1ε
d

dt
+ itn

d

dε
.

More explicitly we can define these mappings by requiring

Ln : tk 7→ −ktn+k,

Ln : tkε 7→ (−k − n

2
)tn+kε,

and

Fn : tk 7→ iktn+kε,

Fn : tkε 7→ itn+k,

where i =
√
−1.

Proposition 32. For n ∈ Z, Ln is an even superderivation on A and Fn is an odd
superderivation on A, in the sence that

Ln(ab) = Ln(a)b+ aLn(b)

Fn(ab) = Fn(a)b+ (−1)|a|aFn(b)

for homogenous a, b ∈ A.
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Proof. A straightforward calculation yields

Ln(tktl) = Ln(tk+l) = (−k − l)tn+k+l = −ktn+ktl − tk · ltn+l = Ln(tk)tl + tkLn(tl),

Ln(tkεtl) = Ln(tk+lε) = (−k − l − n/2)tn+k+lε = (−k − n/2)tn+kε · tl − tkε · ltn+l =

= Ln(tkε)tl + tkεLn(tl),

Ln(tktlε) = Ln(tk+lε) = (−k − l − n/2)tn+k+lε = −ktn+k · tlε+ tk · (−l − n/2)tn+lε =

= Ln(tk)tlε+ tkLn(tlε),

Ln(tkεtlε) = Ln(0) = 0 = (−k − n/2)tn+kε · tlε+ tkε · (−l − n/2)tn+lε =

= Ln(tkε)tlε+ tkεLn(tlε),

and

Fn(tktl) = Fn(tk+l) = i(k + l)tn+k+lε = iktn+kε · tl + tk · iltn+lε = Fn(tk)tl + tkFn(tl),

Fn(tkεtl) = Fn(tk+lε) = itn+k+l = itn+ktl − tkε · iltn+lε = Fn(tkε)tl − tkεFn(tl),

Fn(tktlε) = Fn(tk+lε) = itn+k+l = iktn+kε · tlε+ tk · itn+l = Fn(tk)tlε+ tkFn(tlε),

Fn(tkεtlε) = Fn(0) = 0 = itn+k · tlε− tkε · itn+l = Fn(tkε)tlε− tkεFn(tlε).

The anticommutator [P,Q]+ of two linear operators P and Q on A is defined by

[P,Q]+ = PQ+QP.

Proposition 33. The operators Ln, Fn satisfy the following commutation relations:

[Lm, Ln] = (m− n)Lm+n,

[Lm, Fn] = (
1

2
m− n)Fm+n,

[Fm, Fn]+ = 2Lm+n.

Remark 4. This shows that Ln and Fn generate a super Lie algebra. It is called the
centerless Ramond algebra.

Proof. We have

[Lm, Ln](tk) = (LmLn − LnLm)(tk) =

= Lm(−ktn+k)− Ln(−ktm+k) =

= −k(−n− k)tm+n+k + k(−m− k)tn+m+k =

= (m− n)(−k)tm+n+k =

= (m− n)Ln+m(tk),
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and

[Lm, Ln](tkε) = (LmLn − LnLm)(tkε) =

= Lm((−k − n/2)tn+kε)− Ln((−k −m/2)tm+kε) =

= (−k − n/2)(−n− k −m/2)tm+n+kε

− (−k −m/2)(−m− k − n/2)tn+m+kε =

= (nk + n2/2−mk −m2/2)tm+n+kε =

= (m− n)(−k − (m+ n)/2)tm+n+kε =

= (m− n)Lm+n(tkε).

Also,

[Lm, Fn](tk) = (LmFn − FnLm)(tk) =

= Lm(iktn+kε)− Fn(−ktm+k) =

= ik(−n− k −m/2)tm+n+kε+ ki(m+ k)tn+m+kε =

= (m/2− n)iktm+n+kε =

= (m/2− n)Fm+n(tk),

and

[Lm, Fn](tkε) = (LmFn − FnLm)(tkε) =

= Lm(itn+k)− Fn((−k −m/2)tm+kε) =

= −i(n+ k)tm+n+k − (−k −m/2)itn+m+k =

= (m/2− n)itm+n+k =

= (m/2− n)Fm+n(tk).

Finally we have,

[Fm, Fn]+(tk) = (FmFn + FnFm)(tk) =

= Fm(iktn+kε) + Fn(iktm+kε) =

= ki2tm+n+k + ki2tn+m+k =

= 2Lm+n(tk),

and

[Fm, Fn]+(tkε) = (FmFn + FnFm)(tkε) =

= Fm(itn+k) + Fn(itm+k) =

= i2(n+ k)tm+n+kε+ i2(m+ k)tn+m+kε =

= 2(−k − (m+ n)/2)tm+n+kε =

= 2Lm+n(tk).
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The proof is finished.
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