LOCALLY FINITE MODULES OVER COMMUTATIVE ALGEBRAS

JONAS T. HARTWIG

ABSTRACT. This is a quick overview, intended for students, on the basics of weight modules, generalized weight modules, and locally finite modules over commutative algebras. These concepts often serve as a basis for representation theory of *non*-commutative algebras which contain a "large" commutative subalgebra.

1. Generalized Eigenspace decomposition

1.1. Linear algebra perspective. Let V be a finite-dimensional complex vector space and let $L: V \to V$ be a linear transformation. Choose a basis $\{v_1, v_2, \ldots, v_n\}$ such that the matrix of L is in Jordan normal form. Then each v_i is a generalized eigenvector for L. For each eigenvalue λ of L, let $V(\lambda)$ be the corresponding span of generalized eigenvectors ¹:

$$V(\lambda) = \{ v \in V \mid \exists N \ge 0 : (L - \lambda \operatorname{Id}_V)^N v = 0 \}.$$

$$(1.1)$$

If $\lambda \in \mathbb{C}$ isn't an eigenvalue of L then $V(\lambda)$ is the zero subspace of V. Therefore we have

$$V = \bigoplus_{\lambda \in \mathbb{C}} V(\lambda).$$
(1.2)

Note that from this direct sum we don't see what the structure of L restricted to $V(\lambda)$ is like. It could be diagonalizable or a single Jordan block, or something in between.

1.2. Module perspective. Let $A = \mathbb{C}[x]$ be the algebra of complex polynomials in one variable and let V be a finite-dimensional A-module. Then the action of x on V is a linear transformation of V and thus

$$V = \bigoplus_{\lambda \in \mathbb{C}} V(\lambda) \tag{1.3}$$

where now (letting . stand for the A-module action)

$$V(\lambda) = \{ v \in V \mid (x - \lambda)^N . v = 0, N \gg 0 \}.$$
 (1.4)

1.3. Module perspective with maximal ideals. For $\lambda \in \mathbb{C}$, the principal ideal $\mathfrak{m}_{\lambda} = (x - \lambda)$ is a maximal ideal of $A = \mathbb{C}[x]$. In fact, by the weak Nullstellensatz (Cor. 7.10 in [1]), every maximal ideal of A has this form. Furthermore, $(x - \lambda)^N \cdot v = 0$ iff $\mathfrak{m}_{\lambda}^N \cdot v = 0$. Thus we have

$$V = \bigoplus_{\mathfrak{m} \in \operatorname{MaxSpec}(A)} V(\mathfrak{m})$$
(1.5)

Date: February 22, 2023.

¹The statement $\exists N \ge 0$: $(L - \lambda \operatorname{Id}_V)^N v = 0$ is equivalent to that $\exists N \ge 0 \forall n \ge N$: $(L - \lambda \operatorname{Id}_V)^n v = 0$ which is usually written $(L - \lambda \operatorname{Id}_V)^N v = 0$, $N \gg 0$ where $N \gg 0$ means "for sufficiently large N". We will use this shorthand henceforth.

where MaxSpec(A) is the maximal spectrum of A, defined as the set of maximal ideals of A, and

$$V(\mathfrak{m}) = \{ v \in V \mid \mathfrak{m}^N . v = 0, N \gg 0 \}.$$

$$(1.6)$$

This decomposition can be generalized to arbitrary commutative k-algebras A (where k is any field) and finite-dimensional A-modules V. The goal of these notes is to show how this is achieved.

2. Basics from commutative algebra

We will frequently reference [1] but most books on commutative algebra will contain the results cited. Let A be a commutative ring. The *nilradical* $\mathcal{N}(A)$ is the set of nilpotent elements in A:

$$\mathcal{N}(A) = \{ a \in A \mid a^N = 0, N \gg 0 \}.$$

Lemma 2.1 (Prp. 1.8 in [1]). $\mathcal{N}(A)$ equals the intersection of all prime ideals of A.

The Jacobson radical $\mathcal{R}(A)$ is the intersection of all maximal ideals of A.

Two ideals I and J of A are coprime if I + J = A.

Theorem 2.2 (Remainder Theorem, Prp 1.10 in [1]). Let I_1, I_2, \ldots, I_n be ideals of a commutative ring A and let

$$\varphi: A \to \prod_{k=1}^n A/I_k$$

be the ring homomorphism $\varphi(a) = (a + I_1, a + I_2, \dots, a + I_n)$.

(i) φ is surjective iff I_j and I_k are coprime whenever $j \neq k$, in which case $\prod_{k=1}^n I_k = \bigcap_{k=1}^n I_k$.

(ii) φ is injective iff $\bigcap_{k=1}^{n} I_k = (0)$.

An ideal of A is *nil* if it consists of nilpotent elements. An ideal I is *nilpotent* if $I^n = 0$ for some positive integer n. Every nilpotent ideal is nil, but the converse fails in general. (For example in $A = \mathbb{k}[x_1, x_2, \ldots]/(x_1, x_2^2, x_3^3, \ldots)$ the ideal $I = (\bar{x}_1, \bar{x}_2, \ldots)$ is nil but not nilpotent.) However:

Lemma 2.3. Every finitely-generated nil ideal in a commutative ring is nilpotent.

The *radical* of an ideal $I \subset A$ is $\sqrt{I} = \{a \in A \mid a^N \in I, N \gg 0\}$. If \mathfrak{m} is a maximal ideal of A then $\sqrt{\mathfrak{m}^k} = \mathfrak{m}$ for all positive integers k.

Lemma 2.4 (Prp. 1.16 in [1]). Let I and J be ideals of A such that \sqrt{I} and \sqrt{J} are coprime. Then I and J are coprime.

Theorem 2.5 (Weak Nullstellensatz, Cor. 7.10 in [1]). If \mathfrak{m} is a maximal ideal of a finitely generated commutative \Bbbk -algebra (\Bbbk a field), then A/\mathfrak{m} is a finite field extension of \Bbbk .

3. Generalized weight space decomposition for finite-dimensional modules over commutative k-algebras

Lemma 3.1. Let \Bbbk be a field and A be a finite-dimensional commutative \Bbbk -algebra.

- (i) Every prime ideal of A is maximal.
- (ii) The Jacobson radical $\mathcal{R}(A)$ is nilpotent.
- (iii) A has only finitely many maximal ideals.
- (iv) There exists a positive integer k such that

$$A \cong \frac{A}{\mathfrak{m}_1^k} \times \frac{A}{\mathfrak{m}_2^k} \times \dots \times \frac{A}{\mathfrak{m}_n^k} \tag{3.1}$$

as k-algebras where $\{\mathfrak{m}_1, \mathfrak{m}_2, \ldots, \mathfrak{m}_n\}$ is the set of all maximal ideals of A.

Proof. (i) Let \mathfrak{p} be a prime ideal of A. Then $B = A/\mathfrak{p}$ is a finite-dimensional integral domain. Let x be a nonzero element of B. Let $L_x : B \to B$ be the linear map of left multiplication by x: $L_x(y) = xy$ for $y \in B$. Since B is an integral domain, L_x is injective. Since B is finite-dimensional, L_x is surjective. Hence there exists $y \in B$ such that $xy = 1_B$. Therefore B is a field. Hence \mathfrak{p} is a maximal ideal of A.

(ii) Immediate by (i), Lemma 2.1 and Lemma 2.3.

(iii) Among the collection of finite intersections of maximal ideals of A, pick one, say $\mathfrak{m}_1 \cap \mathfrak{m}_2 \cap \cdots \cap \mathfrak{m}_n$, of minimal dimension. Then for any other maximal ideal \mathfrak{m} of A, we have $\mathfrak{m} \cap \mathfrak{m}_1 \cap \mathfrak{m}_2 \cap \cdots \cap \mathfrak{m}_n = \mathfrak{m}_1 \cap \mathfrak{m}_2 \cap \cdots \cap \mathfrak{m}_n$ (otherwise we'd get a contradiction to the minimality of the dimension). This means that $\mathfrak{m} \supseteq \mathfrak{m}_1 \cap \mathfrak{m}_2 \cap \cdots \cap \mathfrak{m}_n$. Since \mathfrak{m} is maximal hence prime, $\mathfrak{m} \supseteq \mathfrak{m}_i$ for some *i*. (Here we're using that a prime ideal containing an intersection of ideals must contain one the ideals.) Since \mathfrak{m}_i is maximal, $\mathfrak{m} = \mathfrak{m}_i$.

(iv) Let $\{\mathfrak{m}_1, \mathfrak{m}_2, \ldots, \mathfrak{m}_n\}$ be the set of all maximal ideals of A. By (ii) there exists a positive integer k such that $\mathcal{R}(A)^k = 0$. Thus $\prod_i \mathfrak{m}_i^k \subset (\cap_i \mathfrak{m}_i)^k = \mathcal{R}(A)^k = 0$. By Lemma 2.4, the ideals \mathfrak{m}_i^k are pairwise coprime. Thus the statement follows from the Remainder Theorem.

Definition 3.2. Let A be a commutative algebra over a field \Bbbk and let V be an A-module. We call V a generalized weight module with respect to A (or a generalized A-weight module) if

$$V = \bigoplus_{\mathfrak{m} \in \operatorname{MaxSpec}(A)} V(\mathfrak{m}), \tag{3.2}$$

where

$$V(\mathfrak{m}) = \{ v \in V \mid \mathfrak{m}^N v = 0, N \gg 0 \}.$$

$$(3.3)$$

We are now ready to prove:

Theorem 3.3. Let \Bbbk be a field, A be any commutative \Bbbk -algebra, and V be a finite-dimensional A-module. Then V is a generalized weight module with respect to A.

Proof. Let I be the annihilator of V. Then A/I injects into End(V) hence is a finite-dimensional algebra. By Lemma 3.1(iv), $A/I \cong \prod A/\mathfrak{m}_i^k$ where \mathfrak{m}_i are the (finitely many) maximal ideals of A containing I. Let e_i be the corresponding idempotents of A/I. Then $V = \bigoplus_i V_i$ where $V_i = e_i V$. Furthermore $\mathfrak{m}_i^k V_i = 0$.

4. Generalization to locally finite case

Definition 4.1. Let A be a commutative algebra over a field k and let V be an A-module. We say that V is *locally finite-dimensional for* A (or just *locally finite*) if every cyclic A-submodule of V is finite-dimensional: $\forall v \in V : \dim_{\mathbb{K}}(A.v) < \infty$.

Theorem 4.2. Let A be a commutative algebra over a field \Bbbk and let V be an A-module. If V is locally finite then V is a generalized weight module with respect to A. The converse holds if A is noetherian.

Proof. Suppose V is locally finite-dimensional for A. Then any cyclic A-submodule of V is finitedimensional, hence a generalized weight module by Theorem 3.3. Since V (like any module) is the sum of its cyclic submodules, V is itself a generalized weight module.

Conversely, suppose A is noetherian and that V is a generalized weight module. Let $v \in V$. Then v is a sum of finitely many generalized weight vectors. So it suffices to show that each generalized weight vector w generates a finite-dimensional submodule. If $\mathfrak{m}^N w = 0$ where \mathfrak{m} is a cofinite maximal ideal of A, then Aw is a quotient of A/\mathfrak{m}^N . Since A is noetherian, each ideal \mathfrak{m}^k is finitely generated. Therefore $\mathfrak{m}^k/\mathfrak{m}^{k+1}$ is finite-dimensional as a vector space over A/\mathfrak{m} . By the weak Nullstellensatz, A/\mathfrak{m} is finite-dimensional over \Bbbk . Since A/\mathfrak{m}^N has a filtration $A/\mathfrak{m}^N \supseteq \mathfrak{m}/\mathfrak{m}^N \supseteq \mathfrak{m}^2/\mathfrak{m}^N \supseteq \cdots \mathfrak{m}^{N-1}/\mathfrak{m}^N$ whose subquotients are isomorphic to $\mathfrak{m}^k/\mathfrak{m}^{k+1}$ each of which is finite-dimensional as a vector space over A/\mathfrak{m} , we conclude A/\mathfrak{m}^N is finite-dimensional over \Bbbk . Therefore Aw is also finite-dimensional over \Bbbk .

Example 4.3. Let $A = \mathbb{C}[x_1, x_2, ...]$ be a polynomial algebra in a countably infinite set of variables x_i . Let $\mathfrak{m} = (x_1, x_2, ...)$ be the maximal ideal generated by the variables. Then $V = A/\mathfrak{m}^2$ is a generalized weight module with a single weight space because every element of V is annihilated by \mathfrak{m}^2 . On the other hand, V contains $\mathfrak{m}/\mathfrak{m}^2$ which is infinite-dimensional with basis $\{\bar{x}_i\}_{i=1}^{\infty}$, $\bar{x}_i = x_i + \mathfrak{m}^2$. This shows that the phrase "if A is noetherian" cannot be removed from the statement of Theorem 4.2.

5. Exercise

Let $0 \to U \to V \to W \to 0$ be a short exact sequence of A-modules, where A is a commutative k-algebra, k a field. Prove that

1. V is locally finite iff U and W are locally finite.

2. V is a generalized weight module iff U and W are generalized weight modules.

References

[1] M. F. ATIYAH I. G. MACDONALD, Introduction to Commutive Algebra, Addison-Wesley.

DEPARTMENT OF MATHEMATICS, IOWA STATE UNIVERSITY, AMES, IA-50011, USA Email address: jth@iastate.edu URL: http://jthartwig.net