LOCALLY FINITE MODULES OVER COMMUTATIVE ALGEBRAS

JONAS T. HARTWIG

ABSTRACT. This is a quick overview, intended for students, on the basics of weight modules,
generalized weight modules, and locally finite modules over commutative algebras. These concepts
often serve as a basis for representation theory of mon-commutative algebras which contain a
“large” commutative subalgebra.

1. GENERALIZED EIGENSPACE DECOMPOSITION

1.1. Linear algebra perspective. Let V' be a finite-dimensional complex vector space and let
L:V — V be a linear transformation. Choose a basis {v1,va,...,v,} such that the matrix of L is
in Jordan normal form. Then each v; is a generalized eigenvector for L. For each eigenvalue A of
L, let V()) be the corresponding span of generalized eigenvectors

VA ={veV|3IN>0: (L-Ady)Yv=0}. (1.1)
If A € Cisn’t an eigenvalue of L then V() is the zero subspace of V. Therefore we have
V=@, (12)
AeC
Note that from this direct sum we don’t see what the structure of L restricted to V() is like. It

could be diagonalizable or a single Jordan block, or something in between.

1.2. Module perspective. Let A = C|z] be the algebra of complex polynomials in one variable
and let V' be a finite-dimensional A-module. Then the action of  on V' is a linear transformation
of V and thus

V=vH (1.3)

AeC
where now (letting . stand for the A-module action)
V) ={veV|(@@-2N)"v=0,N>0} (1.4)

1.3. Module perspective with maximal ideals. For A € C, the principal ideal my = (z — A) is
a maximal ideal of A = C[z]. In fact, by the weak Nullstellensatz (Cor. 7.10 in [I]), every maximal
ideal of A has this form. Furthermore, (z — A)V.v = 0 iff mY.v = 0. Thus we have

v= & Vm (1.5)

meEMaxSpec(A)
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1The statement IN > 0 : (L — X1dy )N v = 0 is equivalent to that IN > 0V¥n > N : (L — AIdy)™v = 0 which is
usually written (L —AIdy )N v =0, N > 0 where N >> 0 means “for sufficiently large N”. We will use this shorthand
henceforth.
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where MaxSpec(A) is the mazimal spectrum of A, defined as the set of maximal ideals of A, and
Vim)={veV|mMv=0,N>0}. (1.6)

This decomposition can be generalized to arbitrary commutative k-algebras A (where k is any field)
and finite-dimensional A-modules V. The goal of these notes is to show how this is achieved.

2. BASICS FROM COMMUTATIVE ALGEBRA

We will frequently reference [I] but most books on commutative algebra will contain the results
cited. Let A be a commutative ring. The nilradical N(A) is the set of nilpotent elements in A:

NA)={acA|a" =0, N> 0}.
Lemma 2.1 (Prp. 1.8 in [I]). N(A) equals the intersection of all prime ideals of A.

The Jacobson radical R(A) is the intersection of all maximal ideals of A.
Two ideals I and J of A are coprime if [ + J = A.

Theorem 2.2 (Remainder Theorem, Prp 1.10 in [). Let I, I, ..., I, be ideals of a commutative
ring A and let

p:A— H A/
k=1
be the ring homomorphism ¢(a) = (a+ I,a+ Ia,...,a+ I,).
(i) ¢ is surjective iff I; and Iy, are coprime whenever j # k, in which case [[;_; Iy = N}_ 1 Ij.
(i) ¢ is injective iff NY_ I = (0).
An ideal of A is nil if it consists of nilpotent elements. An ideal [ is nilpotent if I™ = 0 for some

positive integer n. Every nilpotent ideal is nil, but the converse fails in general. (For example in
A =K[z1, 29, ...]/(x1,23, 23, ...) the ideal I = (Z1,Za,...) is nil but not nilpotent.) However:

Lemma 2.3. FEvery finitely-generated nil ideal in a commutative ring is nilpotent.

The radical of an ideal I C Ais VI = {a € A|a™ € I, N > 0}. If m is a maximal ideal of A
then vm* = m for all positive integers k.

Lemma 2.4 (Prp. 1.16 in [1]). Let I and J be ideals of A such that /T and \/J are coprime. Then
I and J are coprime.

Theorem 2.5 (Weak Nullstellensatz, Cor. 7.10 in [I]). If m is a mazimal ideal of a finitely
generated commutative k-algebra (k a field), then A/m is a finite field extension of k.

3. GENERALIZED WEIGHT SPACE DECOMPOSITION FOR FINITE-DIMENSIONAL MODULES OVER
COMMUTATIVE k-ALGEBRAS

Lemma 3.1. Let k be a field and A be a finite-dimensional commutative k-algebra.

(i) Every prime ideal of A is maximal.

(if) The Jacobson radical R(A) is nilpotent.

(iii) A has only finitely many mazimal ideals.
)

(iv) There exists a positive integer k such that
A A A
A — X — X X — (3.1)
mp  m my

as k-algebras where {my, mo, ..., m,} is the set of all mazimal ideals of A.
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Proof. (i) Let p be a prime ideal of A. Then B = A/p is a finite-dimensional integral domain.
Let x be a nonzero element of B. Let L, : B — B be the linear map of left multiplication by z:
L,(y) = xy for y € B. Since B is an integral domain, L, is injective. Since B is finite-dimensional,
L, is surjective. Hence there exists y € B such that xy = 1. Therefore B is a field. Hence p is a
maximal ideal of A.

(ii) Immediate by (i), Lemma [2.1] and Lemma [2.3]

(iii) Among the collection of finite intersections of maximal ideals of A, pick one, say m;NmaN- - N
m,,, of minimal dimension. Then for any other maximal ideal m of A, we have mNm;NmyN---Nm,, =
my Nmg N - Nm, (otherwise we’d get a contradiction to the minimality of the dimension). This
means that m O my Nmy N -+~ Nm,. Since m is maximal hence prime, m O m; for some . (Here
we’re using that a prime ideal containing an intersection of ideals must contain one the ideals.)
Since m; is maximal, m = m,.

(iv) Let {my, mg,...,m,} be the set of all maximal ideals of A. By (ii) there exists a positive
integer k such that R(A)* = 0. Thus [[; m} C (N;m;)* = R(A)* = 0. By Lemmal[2.4] the ideals m}
are pairwise coprime. Thus the statement follows from the Remainder Theorem. O

Definition 3.2. Let A be a commutative algebra over a field k and let V' be an A-module. We
call V' a generalized weight module with respect to A (or a generalized A-weight module) if

V= b v, (3.2)

meMaxSpec(A)

where

Vim)={veV|mMo=0, N> 0} (3.3)
We are now ready to prove:

Theorem 3.3. Let k be a field, A be any commutative k-algebra, and V be a finite-dimensional
A-module. Then V is a generalized weight module with respect to A.

Proof. Let I be the annihilator of V. Then A/I injects into End(V') hence is a finite-dimensional
algebra. By Lemma (iv)7 A/I =[] A/m¥ where m; are the (finitely many) maximal ideals of A
containing I. Let e; be the corresponding idempotents of A/I. Then V = @, V; where V; = e;V.
Furthermore mf Vi=0. O

4. GENERALIZATION TO LOCALLY FINITE CASE

Definition 4.1. Let A be a commutative algebra over a field k and let V' be an A-module. We say
that V' is locally finite-dimensional for A (or just locally finite) if every cyclic A-submodule of V' is
finite-dimensional: Yo € V' : dimg(A.v) < oo.

Theorem 4.2. Let A be a commutative algebra over a field k and let V' be an A-module. If V is
locally finite then V is a generalized weight module with respect to A. The converse holds if A is
noetherian.

Proof. Suppose V is locally finite-dimensional for A. Then any cyclic A-submodule of V is finite-
dimensional, hence a generalized weight module by Theorem Since V' (like any module) is the
sum of its cyclic submodules, V is itself a generalized weight module.

Conversely, suppose A is noetherian and that V is a generalized weight module. Let v € V.
Then v is a sum of finitely many generalized weight vectors. So it suffices to show that each
generalized weight vector w generates a finite-dimensional submodule. If m™w = 0 where m is a
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cofinite maximal ideal of A, then Aw is a quotient of A/m~. Since A is noetherian, each ideal
mF is finitely generated. Therefore m*/m**! is finite-dimensional as a vector space over A/m. By
the weak Nullstellensatz, A/m is finite-dimensional over k. Since A/m” has a filtration A/m" D
m/mY D m2/m" D ...mY~1/m" whose subquotients are isomorphic to m*/m**1 each of which
is finite-dimensional as a vector space over A/m, we conclude A/m”" is finite-dimensional over k.
Therefore Aw is also finite-dimensional over k. O

Example 4.3. Let A = C[z1, 22, ...] be a polynomial algebra in a countably infinite set of variables
x;. Let m = (x1,22,...) be the maximal ideal generated by the variables. Then V = A/m? is a
generalized weight module with a single weight space because every element of V' is annihilated
by m?%. On the other hand, V contains m/m? which is infinite-dimensional with basis {z;}52,
Z; = x; + m?. This shows that the phrase “if A is noetherian” cannot be removed from the

statement of Theorem [1.2]

5. EXERCISE
Let 0 - U -V — W — 0 be a short exact sequence of A-modules, where A is a commutative
k-algebra, k a field. Prove that
1. V is locally finite iff U and W are locally finite.

2. V is a generalized weight module iff U and W are generalized weight modules.
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