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Abstract. This is a quick overview, intended for students, on the basics of weight modules,
generalized weight modules, and locally finite modules over commutative algebras. These concepts

often serve as a basis for representation theory of non-commutative algebras which contain a
“large” commutative subalgebra.

1. Generalized eigenspace decomposition

1.1. Linear algebra perspective. Let V be a finite-dimensional complex vector space and let
L : V → V be a linear transformation. Choose a basis {v1, v2, . . . , vn} such that the matrix of L is
in Jordan normal form. Then each vi is a generalized eigenvector for L. For each eigenvalue λ of
L, let V (λ) be the corresponding span of generalized eigenvectors 1:

V (λ) = {v ∈ V | ∃N ≥ 0 : (L− λ IdV )
Nv = 0}. (1.1)

If λ ∈ C isn’t an eigenvalue of L then V (λ) is the zero subspace of V . Therefore we have

V =
⊕
λ∈C

V (λ). (1.2)

Note that from this direct sum we don’t see what the structure of L restricted to V (λ) is like. It
could be diagonalizable or a single Jordan block, or something in between.

1.2. Module perspective. Let A = C[x] be the algebra of complex polynomials in one variable
and let V be a finite-dimensional A-module. Then the action of x on V is a linear transformation
of V and thus

V =
⊕
λ∈C

V (λ) (1.3)

where now (letting . stand for the A-module action)

V (λ) = {v ∈ V | (x− λ)N .v = 0, N ≫ 0}. (1.4)

1.3. Module perspective with maximal ideals. For λ ∈ C, the principal ideal mλ = (x− λ) is
a maximal ideal of A = C[x]. In fact, by the weak Nullstellensatz (Cor. 7.10 in [1]), every maximal
ideal of A has this form. Furthermore, (x− λ)N .v = 0 iff mN

λ .v = 0. Thus we have

V =
⊕

m∈MaxSpec(A)

V (m) (1.5)
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1The statement ∃N ≥ 0 : (L− λ IdV )Nv = 0 is equivalent to that ∃N ≥ 0 ∀n ≥ N : (L− λ IdV )nv = 0 which is

usually written (L−λ IdV )Nv = 0, N ≫ 0 where N ≫ 0 means “for sufficiently large N”. We will use this shorthand
henceforth.
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where MaxSpec(A) is the maximal spectrum of A, defined as the set of maximal ideals of A, and

V (m) = {v ∈ V | mN .v = 0, N ≫ 0}. (1.6)

This decomposition can be generalized to arbitrary commutative k-algebras A (where k is any field)
and finite-dimensional A-modules V . The goal of these notes is to show how this is achieved.

2. Basics from commutative algebra

We will frequently reference [1] but most books on commutative algebra will contain the results
cited. Let A be a commutative ring. The nilradical N(A) is the set of nilpotent elements in A:

N(A) = {a ∈ A | aN = 0, N ≫ 0}.
Lemma 2.1 (Prp. 1.8 in [1]). N(A) equals the intersection of all prime ideals of A.

The Jacobson radical R(A) is the intersection of all maximal ideals of A.
Two ideals I and J of A are coprime if I + J = A.

Theorem 2.2 (Remainder Theorem, Prp 1.10 in [1]). Let I1, I2, . . . , In be ideals of a commutative
ring A and let

φ : A →
n∏

k=1

A/Ik

be the ring homomorphism φ(a) = (a+ I1, a+ I2, . . . , a+ In).

(i) φ is surjective iff Ij and Ik are coprime whenever j ̸= k, in which case
∏n

k=1 Ik = ∩n
k=1Ik.

(ii) φ is injective iff ∩n
k=1Ik = (0).

An ideal of A is nil if it consists of nilpotent elements. An ideal I is nilpotent if In = 0 for some
positive integer n. Every nilpotent ideal is nil, but the converse fails in general. (For example in
A = k[x1, x2, . . .]/(x1, x

2
2, x

3
3, . . .) the ideal I = (x̄1, x̄2, . . .) is nil but not nilpotent.) However:

Lemma 2.3. Every finitely-generated nil ideal in a commutative ring is nilpotent.

The radical of an ideal I ⊂ A is
√
I = {a ∈ A | aN ∈ I, N ≫ 0}. If m is a maximal ideal of A

then
√
mk = m for all positive integers k.

Lemma 2.4 (Prp. 1.16 in [1]). Let I and J be ideals of A such that
√
I and

√
J are coprime. Then

I and J are coprime.

Theorem 2.5 (Weak Nullstellensatz, Cor. 7.10 in [1]). If m is a maximal ideal of a finitely
generated commutative k-algebra (k a field), then A/m is a finite field extension of k.

3. Generalized weight space decomposition for finite-dimensional modules over
commutative k-algebras

Lemma 3.1. Let k be a field and A be a finite-dimensional commutative k-algebra.
(i) Every prime ideal of A is maximal.
(ii) The Jacobson radical R(A) is nilpotent.
(iii) A has only finitely many maximal ideals.
(iv) There exists a positive integer k such that

A ∼=
A

mk
1

× A

mk
2

× · · · × A

mk
n

(3.1)

as k-algebras where {m1,m2, . . . ,mn} is the set of all maximal ideals of A.
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Proof. (i) Let p be a prime ideal of A. Then B = A/p is a finite-dimensional integral domain.
Let x be a nonzero element of B. Let Lx : B → B be the linear map of left multiplication by x:
Lx(y) = xy for y ∈ B. Since B is an integral domain, Lx is injective. Since B is finite-dimensional,
Lx is surjective. Hence there exists y ∈ B such that xy = 1B . Therefore B is a field. Hence p is a
maximal ideal of A.

(ii) Immediate by (i), Lemma 2.1 and Lemma 2.3.
(iii) Among the collection of finite intersections of maximal ideals of A, pick one, say m1∩m2∩· · ·∩

mn, of minimal dimension. Then for any other maximal ideal m of A, we have m∩m1∩m2∩· · ·∩mn =
m1 ∩ m2 ∩ · · · ∩ mn (otherwise we’d get a contradiction to the minimality of the dimension). This
means that m ⊇ m1 ∩ m2 ∩ · · · ∩ mn. Since m is maximal hence prime, m ⊇ mi for some i. (Here
we’re using that a prime ideal containing an intersection of ideals must contain one the ideals.)
Since mi is maximal, m = mi.

(iv) Let {m1,m2, . . . ,mn} be the set of all maximal ideals of A. By (ii) there exists a positive
integer k such that R(A)k = 0. Thus

∏
i m

k
i ⊂ (∩imi)

k = R(A)k = 0. By Lemma 2.4, the ideals mk
i

are pairwise coprime. Thus the statement follows from the Remainder Theorem. □

Definition 3.2. Let A be a commutative algebra over a field k and let V be an A-module. We
call V a generalized weight module with respect to A (or a generalized A-weight module) if

V =
⊕

m∈MaxSpec(A)

V (m), (3.2)

where

V (m) = {v ∈ V | mNv = 0, N ≫ 0}. (3.3)

We are now ready to prove:

Theorem 3.3. Let k be a field, A be any commutative k-algebra, and V be a finite-dimensional
A-module. Then V is a generalized weight module with respect to A.

Proof. Let I be the annihilator of V . Then A/I injects into End(V ) hence is a finite-dimensional
algebra. By Lemma 3.1(iv), A/I ∼=

∏
A/mk

i where mi are the (finitely many) maximal ideals of A
containing I. Let ei be the corresponding idempotents of A/I. Then V =

⊕
i Vi where Vi = eiV .

Furthermore mk
i Vi = 0. □

4. Generalization to locally finite case

Definition 4.1. Let A be a commutative algebra over a field k and let V be an A-module. We say
that V is locally finite-dimensional for A (or just locally finite) if every cyclic A-submodule of V is
finite-dimensional: ∀v ∈ V : dimk(A.v) < ∞.

Theorem 4.2. Let A be a commutative algebra over a field k and let V be an A-module. If V is
locally finite then V is a generalized weight module with respect to A. The converse holds if A is
noetherian.

Proof. Suppose V is locally finite-dimensional for A. Then any cyclic A-submodule of V is finite-
dimensional, hence a generalized weight module by Theorem 3.3. Since V (like any module) is the
sum of its cyclic submodules, V is itself a generalized weight module.

Conversely, suppose A is noetherian and that V is a generalized weight module. Let v ∈ V .
Then v is a sum of finitely many generalized weight vectors. So it suffices to show that each
generalized weight vector w generates a finite-dimensional submodule. If mNw = 0 where m is a
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cofinite maximal ideal of A, then Aw is a quotient of A/mN . Since A is noetherian, each ideal
mk is finitely generated. Therefore mk/mk+1 is finite-dimensional as a vector space over A/m. By
the weak Nullstellensatz, A/m is finite-dimensional over k. Since A/mN has a filtration A/mN ⊇
m/mN ⊇ m2/mN ⊇ · · ·mN−1/mN whose subquotients are isomorphic to mk/mk+1 each of which
is finite-dimensional as a vector space over A/m, we conclude A/mN is finite-dimensional over k.
Therefore Aw is also finite-dimensional over k. □

Example 4.3. Let A = C[x1, x2, . . .] be a polynomial algebra in a countably infinite set of variables
xi. Let m = (x1, x2, . . .) be the maximal ideal generated by the variables. Then V = A/m2 is a
generalized weight module with a single weight space because every element of V is annihilated
by m2. On the other hand, V contains m/m2 which is infinite-dimensional with basis {x̄i}∞i=1,
x̄i = xi + m2. This shows that the phrase “if A is noetherian” cannot be removed from the
statement of Theorem 4.2.

5. Exercise

Let 0 → U → V → W → 0 be a short exact sequence of A-modules, where A is a commutative
k-algebra, k a field. Prove that

1. V is locally finite iff U and W are locally finite.
2. V is a generalized weight module iff U and W are generalized weight modules.
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