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Vector Superspaces

Z2 = Z/2Z = {0̄, 1̄} group of order two

Definition
A vector superspace V is a Z2-graded vector space

V = V0̄ ⊕ V1̄

Elements of V0̄ ∪ V1̄ are homogeneous. For homogeneous v , the parity
|v | ∈ Z2 is defined by

v ∈ V|v |.

If |v | = 0̄ we say v is even.
If |v | = 1̄ we say v is odd.
(The zero vector is both even and odd.)
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Associative Superalgebras

Definition
An associative superalgebra is a vector superspace A = A0̄ ⊕ A1̄ with a
bilinear multiplication

A× A→ A, (a, b) 7→ ab

and an identity element 1A ∈ A such that

AiAj ⊂ Ai+j 1A ∈ A0̄
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Example

Let V = V0̄ ⊕ V1̄ be a vector superspace.
Let A = EndC(V ) be the associative algebra of linear transformations from
V to V .
Define

A0̄ = {T : V → V | T (V0̄) ⊂ V0̄,T (V1̄) ⊂ V1̄}
A1̄ = {T : V → V | T (V0̄) ⊂ V1̄,T (V1̄) ⊂ V0̄}

Then A is an associative superalgebra.
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Lie Superalgebras

Definition
A Lie Superalgebra is a vector superspace g = g0̄ ⊕ g1̄ with a bilinear
bracket

g× g→ g, (x , y) 7→ [x , y ]

satisfying

[gi , gj ] ⊂ gi+j

[x , y ] = −(−1)|x ||y |[y , x ]

[x , [y , z ]] = [[x , y ], z ] + (−1)|x ||y |[y , [x , z ]]

Note
g0̄ is a Lie algebra.
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The General Linear Lie Superalgebra
If A is an associative superalgebra we obtain a Lie superalgebra L(A) by

L(A) = A as vector superspace

[a, b] = ab − (−1)|a||b|ba

Definition
If V = V0̄⊕V1̄ is a vector superspace, the general linear Lie superalgebra is

gl(V ) = L
(

EndC(V )
)

Explicitly:
V = Cm|n = Cm ⊕ Cn

gl(V ) = gl(m, n) =

{[
A 0
0 D

]}
⊕
{[

0 B
C 0

]}
[x , y ] = xy − (−1)|x ||y |yx
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Kac’s Classification

Simple Lie Superalgebras

Classical

Cartan Type
W (n), S(n)
S̃(n), H(n)

Basic
sl(m|n), osp(m|2n)

D(2, 1; a), G(1|2), F (1|3)
Strange

P (n), Q(n)
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The Orthosymplectic Lie Superalgebra
V vector superspace with non-degenerate bilinear form (·, ·) which is

I supersymmetric: (v ,w) = (−1)|v ||w |(w , v),

I even: (V0̄,V1̄) = 0.

Definition
The orthosymplectic Lie superalgebra is

osp(V ) = {a ∈ gl(V ) | (av ,w) + (−1)|a||v |(v , aw) = 0 ∀v ,w ∈W }

When dimV0̄ = m and dimV1̄ = 2n we write

osp(m|2n) = osp(V )

Note

osp(m|2n)0̄ = o(m)⊕ sp(2n)
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Representations

Definition

(i) A representation of a Lie superalgebra g is a vector superspace V
with a Lie superalgebra homomorphism ρ : g→ gl(V ). We write

x .v = ρ(x)v x ∈ g, v ∈ V .

(ii) A subrepresentation of V is a subsuperspace U ⊂ V such that

x .u ∈ U ∀x ∈ g, u ∈ U

(iii) A representation V is irreducible if {0} and V are the only
subrepresentations.

(iv) V is completely reducible if V is the direct sum of irreducible
subrepresentations

V = U1 ⊕ U2 ⊕ · · · ⊕ Uk
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Tensor Products

Definition
The tensor product of representations V and W of g is

V ⊗W =
(
V0̄ ⊗W0̄ ⊕ V1̄ ⊗W1̄

)
⊕
(
V0̄ ⊗W1̄ ⊕ V1̄ ⊗W0̄

)
with action

x .(v ⊗ w) = (x .v)⊗ w + (−1)|x ||v |v ⊗ (x .w)

Problem
Given representations V and W of g, such that V ⊗W is completely
reducible, find an explicit decomposition

V ⊗W = U1 ⊕ U2 ⊕ · · · ⊕ Un

into irreducible subrepresentations Ui .
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The Orthosymplectic Lie Superalgebra osp(1|2)

osp(1|2) = osp(1|2)0̄ ⊕ osp(1|2)1̄

osp(1|2)0̄ = Cf ⊕ Ch ⊕ Ce osp(1|2)1̄ = Cy ⊕ Cx

f =

0 0 0
0 0 0
0 1 0

 h =

0 0 0
0 1 0
0 0 −1

 e =

0 0 0
0 0 1
0 0 0


y =

 0 1 0
0 0 0
−1 0 0

 x =

0 0 1
1 0 0
0 0 0


osp(1|2) = g− ⊕ h⊕ g+

g− = Cf ⊕ Cy h = Ch g+ = Ce ⊕ Cx
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Irreducible Representations of osp(1|2)
I Every finite-dimensional representation of osp(1|2n) is completely

reducible.
I For each ` ∈ Z≥0 there is an irreducible representation V (`) of

osp(1|2) of dimension 2`+ 1.
I Every finite-dimensional irreducible representation of osp(1|2) is

equivalent to V (`) for some ` ∈ Z≥0.
I We have the following Clebsch-Gordan type decomposition:

V (`)⊗ V (`′) ∼=
`+`′⊕

j=|`−`′|

V (j) (Scheunert-Nahm-Rittenberg 1977)

Problems
I What about infinite-dimensional representations?

I How can we find explicit subrepresentations Uj of V (`)⊗ V (`′) such
that Uj

∼= V (j)?
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Primitive Vectors
Let g = g− ⊕ h⊕ g+ be a basic Lie superalgebra.

Definition
Category O is the full subcategory of Rep g consisting of finitely generated
locally g+-finite weight modules.

Definition
Let V ∈ Rep g. The space of primitive (or extremal) vectors in V is

V+ = {v ∈ V | x .v = 0 ∀x ∈ g+}

Fact
If V ∈ O is completely reducible, and {vi}i is a weight basis for V+ then

V =
⊕
i

Vi Vi = U(g)vi

and each Vi is an irreducible representation.
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Extremal Projector (Asherova, Smirnov, Tolstoy, ... 1971–)
I g = g− ⊕ h⊕ g+ basic Lie superalgebra
I C a subcategory of Rep g
I functors (−)+, (−)− : C→ SVec:

V+ = {v ∈ V | g+v = 0}
V− = V /g−V (coinvariants)

I Inclusion ιV : V+ → V and projection πV : V → V− compose to

QV : V+ → V− v 7→ v + g−V  Q : (−)+ ⇒ (−)−

Definition (HW 2021)

An extremal projector P for g in C is an inverse of Q. Then
PV := ιV ◦ PV ◦ πV is a linear map V → V for any V ∈ Rep g, satisfying

g+PV = 0 = PV g− P2
V = PV PV ◦ ιV = ιV πV ◦ PV = πV

In particular: PV : V → V+ is a linear projection.

Jonas Hartwig (Iowa State University) The Diagonal Reduction Algebra for the Lie Superalgebra osp(1|2) 14 / 30



Examples

Let C = C(g) be the subcategory of O of modules with support contained
in {λ ∈ h∗ | ∀α ∈ R+ : λ(α∨) /∈ Z}.
Theorem (Tolstoy 1985)

If g = g− ⊕ h⊕ g+ is a basic Lie superalgebra, then g has an extremal
projector in C.

Example

For g = sl(2):

P =
∞∑
n=0

(−1)n

n!(h + ρ(h) + n)n
f nen

where ρ(h) = 1 and (x)n = x(x − 1) · · · (x − n + 1) is the falling factorial.
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Mickelsson’s Step Algebra
(Mickelsson, van den Hombergh, Zhelobenko, Khoroshkin, Ogievetsky,...)
I g ⊂ G reductive pair of fin-dim’l complex Lie (super)algebras
I g = g− ⊕ h⊕ g+ triangular decomposition (assume g basic)
I U = U(G)
I I = Ug+ left ideal
I N = NU(I ) = {u ∈ U | g+u ⊂ Ug+} normalizer of I in U
I S(G, g) = N/I Mickelsson’s step algebra (1973)

Lemma
If V is a U(G)-module then V+ = {v ∈ V | g+v = 0} is an
S(G, g)-module.

Proof.
For u + I ∈ S(G, g) and v ∈ V+: g+uv ⊂ Ug+v = 0. So uv ∈ V+.

Theorem (van den Hombergh 1975)

If V is a locally g-finite irreducible U(G)-module, then V+ is an
irreducible S(G, g)-module.
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Difficulties with S(G, g)

1. S(G, g) is not a finitely generated C-algebra. How can one write
down elements of S(G, g)?

2. How can one effectively find relations among elements?
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Remarkable Observation

(Zhelobenko 1985)

Let V = U/I = U(G)/U(G)g+, regarded as a left g-module. Then

V+ = {u + U(G)g+ | g+u ⊂ U(g)g+} = N/I = S(G, g).

In other words, the step algebra itself is the space of g+-invariants in the
universal relative Verma module U/I .

Therefore, if we can use the extremal projector P we can describe S(G, g)
and resolve the difficulties.
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Zhelobenko’s Reduction Algebra
To deploy P one replaces U by U ′ = U(G)[(hα − n)−1 | n ∈ Z, α ∈ Φ(g)]
in the construction of S(G, g) to obtain

Z (G, g) = NU′(I ′)/I ′, I ′ = U ′g+

which is called the reduction algebra of the pair g ⊂ G. This ensures that
U ′/I ′ is an object of C so that we have

PU′/I ′ : U ′/I ′ � (U ′/I ′)+ = Z (G, g)

The following addresses the “difficulties”:

Theorem

1. Decompose G = g⊕ p as g-modules. Then the image of p in Z (G, g)
generates Z (G, g) as a U ′(h)-ring. (Mickelsson 1973)

2. The bijection QU′/I ′ : Z (G, g)→ (U ′/I ′)− = g−U
′\U ′/U ′g+ equips

the double coset space with an associative product ū♦v̄ = uPv .
(Khoroshkin-Ogievetsky 2008; HW 2021)
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Remarks

Theorem
Let V be an irreducible representation of G such that V ∈ C(g), then V+

is an irreducible representation of Z (G, g).

Remark
Z (G, g) ∼= S(G, g)⊗U(h) U

′(h)
So if z ∈ Z (G, g) then fz ∈ S(G, g) for some f ∈ U(h) \ {0}.
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Previous Work

The reduction algebras Z (G, g) have been studied extensively when
rkG ≤ 1 + rk g, including for

I (G, g) =
(
g(n), g(n − 1)

)
where g(n) = gl(n), sl(n), so(n) (van den

Hombergh 1976; Zhelobenko 1983–)

I (G, g) =
(
g(n), g(n − 1)

)
where g(n) = gl(m|n), osp(n|2m), m fixed

(Tolstoy 1986)

I (G, g) =
(
so(n), so(n − 2)

)
and

(
sp(2n), sp(2n − 2)

)
(Molev 2000).

The quantum analog of the reduction algebra, Zq(G, g), associated to
Uq(g) ⊂ Uq(G) has also been studied for (G, g) =

(
g(n), g(n − 1)

)
where

I g(n) = su(n) (Tolstoy 1990)

I g(n) = su(1|n) (Palev-Tolstoy 1991)

I g(n) = so(n) and sp(2n) (Ashton-Mudrov 2015)
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Diagonal Reduction Algebras

Take G = g× g. The diagonal embedding g ⊂ g× g gives rise to
DR(g) = Z (g× g, g) called the diagonal reduction algebra of g.

Application

If V and W are irreducible highest weight representations of g such that
V ⊗W ∈ C, then (V ⊗W )+ is an irreducible DR(g)-module.

Theorem (Khoroshkin-Ogievetsky 2011, 2017)

For g = gl(n):

1. Complete presentations of DR(g) including one in terms of the
reflection equation from R-matrix formalism.

2. Construction of 2n central elements of DR(g) that conjecturally
generate the whole center.

3. DR(g) has the structure of a braided bialgebra.
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Main Result 1
Let g = osp(1|2). For g ∈ {f , y , h, x , e} put

ḡ = PU′/I ′(g ⊗ 1− 1⊗ g + I ′) ∈ DR(g)

We know that {f̄ , ȳ , h̄, x̄ , ē} generates DR(g) as an U ′(h)-ring, where

U ′(h) = C[h][(h − n)−1 | n ∈ Z]

Theorem (HW 2021)

1. Complete presentation of DR(g). 12 relations, they look look like

ēȳ = r1(h)ȳ ē + r2(h)h̄x̄

where ri (h) are rational functions of h.

2. PBW type basis: DR(g) is a free left U ′(h)-module on the set

{f̄ i ȳ j h̄k x̄ l ēm | i , j , k, l ,m ∈ Z≥0; j , l ≤ 1}
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Algorithm in Proof

1. Pass to double coset space, compute all ordered quadratic monomials,
for ex

ȳ ē 7→ (y ⊗ 1− 1⊗ y)P(e ⊗ 1− 1⊗ e) + g−U + Ug+

=
∞∑
n=0

ϕn(h ± 1)(y ⊗ 1− 1⊗ y)ynxn(e ⊗ 1− 1⊗ e) + g−U + Ug+

=
∞∑
n=0

ϕn(h ± 1)(− ad y)n(y ⊗ 1− 1⊗ y)(ad x)n(e ⊗ 1− 1⊗ e)

+ g−U + Ug+ = . . .

2. Express in terms of ordered quadratic monomials in U(G).

3. Invert triangular system of linear equations.

4. For any mis-ordered product eg ēȳ , compute it as above then use
inverse system to write using ordered products.
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Gorelik’s Ghost Center

The center of an associative superalgebra A consists of all sums of
homogeneous z satisfying

za = (−1)|z||a|az

for all homogeneous a ∈ A.

Definition (Gorelik 2000)

1. The anti-center Z= Z(A) of an associative superalgebra A is given
by all sums of homogeneous z satisfying

za = (−1)(|z|+1̄)|a|az

for all homogeneous a ∈ A.

2. The ghost center is ZZ (A) = Z (A)⊕ Z(A).
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Main Result 2: Ghost Center of DR
(
osp(1|2)

)
Put

I g = osp(1|2)

I C ∈ Z (U(g)) the Casimir element

I Q ∈ Z
(
U(g)

)
the Scasimir element (Leśniewski 1995)

Theorem (HW 2022)

Let A = DR
(
osp(1|2)

)
. The ghost center ZZ (A) is generated by the three

elements
C± := C ⊗ 1± 1⊗ C + I ′ ∈ Z (A),

Q := Q ⊗ Q + I ′ ∈ Z(A).

Moreover, there is an injective algebra map

ϕ : ZZ (A)→ C[x , y ]

such that ϕ(C+) = x2 + y2, ϕ(C−) = 2xy , ϕ(Q) = x2 − y2.
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Steps in Proof

1. Using our PBW basis, we define an analog of the Harish-Chandra
homomorphism ϕ : ZZ (A)→ U ′(h)[h̄] ⊂ C(h, h̄).

2. irreducible Verma modules ⇒ kerϕ = 0

3. reducible Verma modules ⇒ imϕ consists of relative
Z2 × Z2-invariants C[x , y ]Z2×Z2

χ , χ : Z2 × Z2 → {±1} character

4. check that {ϕ(C+), ϕ(C−), ϕ(Q)} generates imϕ.

Key technical lemma for step 3 is computing the radical of a Shapovalov
type form on Verma modules over DR(g).
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Main Result 3: Irreps of DR
(
osp(1|2)

)
Theorem (HW 2022)

Let A = DR
(
osp(1|2)

)
.

1. For every odd positive integer n and every (λ, µ) ∈ C× (C \ Z)
satisfying

λ2 = (µ+ n)2

there is an irreducible n-dimensional representation L(λ, µ) of A such
that the action of the ghost center on L(λ, µ) is given by

C+ 7→ λ2 + µ2 C− 7→ 2λµ Q 7→ (λ2 − µ2)(−1)|·|

where (−1)|·| ∈ EndC
(
L(λ, µ)

)
sends homogeneous v to (−1)|v |v .

2. Every finite-dimensional irreducible representation of A has odd
dimension and is isomorphic to L(λ, µ) for a unique pair (λ, µ)
satisfying λ2 = (µ+ dimV )2.
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Application to Tensor Product Decompositions
Let g = osp(1|2). For ` ∈ Z≥0, let V (`) be the (1 + 2`)-dimensional irrep
of g, and C[x ] = V (−1/2) be the polynomial irrep of g. We know:

V (`)⊗ V (`′) ∼=
`+`′⊕

j=|`−`′|

V (j) (Scheunert-Nahm-Rittenberg 1977)

C[x ]⊗ V (1) ∼=
2⊕

j=0

V (1− 1

2
− j) (special case of Coulembier 2013)

Theorem (HW 2022)

C[x ]⊗ V (`) =
2⊕̀
j=0

U(g−)ȳ j · (1⊗ v`) ∼=
2⊕̀
j=0

V (1− 1

2
− j)

where ȳ ∈ N ⊂ U(g× g) is a lowering operator explicitly given in a PBW
basis for g× g.
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Future directions

I Can DR
(
osp(1|2n)

)
be presented using R-matrix formalism,

analogous to the reflection equation for DR
(
gl(n)

)
?

I One can define Z (A, g) where A is an associative superalgebra and
g→ A. We are interested in Z

(
An(C)⊗ U

(
osp(1|2n)

)
, osp(1|2n)

)
and applications to intertwining operators for C[x1, . . . , xn]⊗ V (λ).
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