Harish-Chandra modules over orders in smash products

Jonas Hartwig

Iowa State University

January 26, 2021

Jonas Hartwig (Iowa State University) Harish-Chandra modules over orders in smash products

Outline

Overview

Harish-Chandra modules

Hopf Galois orders

Theorems

Spherical Galois orders

Future

Jonas Hartwig (lowa State University) Harish-Chandra modules over orders in smash products

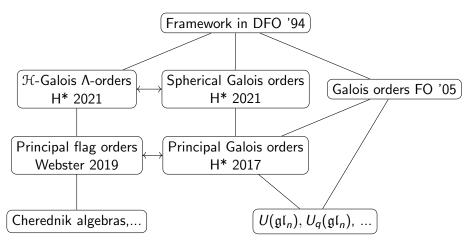


Figure: (D)FO = (Drozd-)Futorny-Ovsienko

Harish-Chandra subalgebras

- A associative algebra over a field \Bbbk
- Γ subalgebra of A
- $\mathsf{cfs}(\Gamma)$ set of maximal ideals of Γ of finite co-dimension
- $S_{\mathfrak{m}}$ the unique simple (left) Γ/\mathfrak{m} -module for $\mathfrak{m} \in \mathsf{cfs}(\Gamma)$

Definition (DFO 1994)

- ► Γ is quasi-commutative if $\operatorname{Ext}_{\Gamma}^{1}(S_{\mathfrak{m}}, S_{\mathfrak{n}}) = 0$ for all $\mathfrak{m}, \mathfrak{n} \in \operatorname{cfs}(\Gamma)$, $\mathfrak{m} \neq \mathfrak{n}$.
- Γ is quasi-central in A if every finitely generated Γ-subbimodule of A is finitely generated as a left and right Γ-module.
- Γ is a Harish-Chandra subalgebra of A if Γ is both quasi-commutative and quasi-central in A.

Harish-Chandra modules

Harish-Chandra subalgebras, contd.

Example

If char $\mathbb{k} = 0$ and \mathfrak{g} is a finite-dimensional Lie algebra and \mathfrak{k} is a reductive or nilpotent Lie subalgebra of \mathfrak{g} , then $\Gamma = U(\mathfrak{k})$ is a Harish-Chandra subalgebra of $U(\mathfrak{g})$.

Example

If Γ is commutative noetherian, and A is generated over Γ by an element x such that $\Gamma x + \Gamma = x\Gamma + \Gamma$, then Γ is a Harish-Chandra subalgebra of A.

Example

 $\Gamma = \langle Z_1, \ldots, Z_n \rangle \subset U(\mathfrak{gl}_n), \ Z_k = Z(U(\mathfrak{gl}_k)), \ \mathfrak{gl}_1 \subset \mathfrak{gl}_2 \subset \cdots \subset \mathfrak{gl}_n$ Then Γ is a (commutative) Harish-Chandra subalgebra of $U(\mathfrak{gl}_n)$.

Harish-Chandra modules

For the rest of this talk, Γ is commutative.

Definition (DFO 1994)

Suppose $\Gamma \subset A$ is a Harish-Chandra subalgebra.

► An A-module V is a Harish-Chandra module (with respect to Γ) if

$$V = \bigoplus_{\mathfrak{m} \in \mathsf{cfs}(\Gamma)} V^{\mathfrak{m}}, \quad V^{\mathfrak{m}} = \{ v \in V \mid \mathfrak{m}^{n} v = 0, n \gg 0 \}.$$

► $HC(A, \Gamma)$ — category of Harish-Chandra A-modules with respect to Γ .

The fiber over m = lrr(A, m) — set of isomorphism classes of simple Harish-Chandra A-modules with respect to Γ, such that V^m ≠ 0.

Equivalence of categories

Definition (DFO 1994)

Category ${\mathcal A}$ (associated to $\Gamma \subset A)$ is given by

- Objects: cfs(Γ)
- Morphisms:

$$\mathcal{A}(\mathfrak{m},\mathfrak{n}) = \lim_{\longleftarrow} \frac{A}{\mathfrak{n}^n A + A\mathfrak{m}^n}$$

An \mathcal{A} -module M is *discrete* if all $\mathcal{A}(\mathfrak{m},\mathfrak{n}) \times M(\mathfrak{m}) \rightarrow M(\mathfrak{n})$ are continuous. Theorem (DFO 1994)

There is an equivalence of categories

$$\mathsf{HC}(A,\Gamma)\simeq\mathsf{Mod}^\mathsf{d}{-}\mathcal{A}$$

and $Irr(A, \mathfrak{m})$ is in bijection with simple discrete $\mathcal{A}(\mathfrak{m}, \mathfrak{m})$ -modules.

Harish-Chandra modules

Problem 1: Existence/construction

Existence problem: Given m, when is Irr(A, m) nonempty? Explicit construction of some V?

Example: History of Gelfand-Tsetlin modules

 $\mathfrak{gl}_1 \subset \mathfrak{gl}_2 \subset \cdots \subset \mathfrak{gl}_n$ $\Gamma = \langle Z_1, \ldots, Z_n \rangle \subset U(\mathfrak{gl}_n), \ Z_k = Z(U(\mathfrak{gl}_k))$

Given a character λ of the Gelfand-Tsetlin subalgebra Γ with kernel \mathfrak{m}_{λ} , does there exist a simple Harish-Chandra module V for $U(\mathfrak{gl}_n)$ with respect to Γ such that $V^{\mathfrak{m}_{\lambda}} \neq 0$? If so, how can one be constructed?

- DFO 1994 existence for generic λ (from 1950's formulas)
- Ovsienko 2003 existence for any λ
- Futorny-Grantcharov-Ramírez 2014: derivative tableaux
- Vishnyakova 2017: local distributions
- Ramírez-Zadunaisky 2017: explicit construction for any λ
- Early-Mazorchuk-Vishnyakova 2017: canonical simple modules
- Webster 2019: classification by goodly Lyndon words
- Silverthorne-Webster 2020: any simple GZ module is canonical

Problem 2: Finiteness

► Finiteness problem: When is Irr(*A*, m) finite? Put

$$\widehat{A}_{\mathfrak{m}} = \mathcal{A}(\mathfrak{m},\mathfrak{m}) = \lim_{\longleftarrow} \frac{A}{\mathfrak{m}^n A + A\mathfrak{m}^n} \qquad \qquad \widehat{\Gamma}_{\mathfrak{m}} = \lim_{\longleftarrow} \Gamma/\mathfrak{m}^n.$$

Theorem (DFO 1994) If $\widehat{A}_{\mathfrak{m}}$ is finitely generated as a right $\widehat{\Gamma}_{\mathfrak{m}}$ -module then (i) Irr(A, \mathfrak{m}) is finite, (ii) for any $[V] \in Irr(A, \mathfrak{m})$, $V^{\mathfrak{m}}$ is finite-dimensional.

Theorem (FO 2006)

For any character λ of $\Gamma \subset U = U(\mathfrak{gl}_n)$, $\widehat{U}_{\mathfrak{m}_{\lambda}}$ is finitely generated as a right $\widehat{\Gamma}_{\mathfrak{m}_{\lambda}}$ -module, hence $\operatorname{Irr}(U,\mathfrak{m}_{\lambda})$ is finite.

Hopf Galois orders

Settings

Definition

A setting is a pair (\mathcal{H}, Λ) where \mathcal{H} Hopf algebra with invertible antipode, Λ a left \mathcal{H} -module algebra such that

- (i) Λ is a noetherian integral domain,
- (ii) the action of $\mathcal H$ on Λ extends to $L = \operatorname{Frac} \Lambda$,

(iii) Λ is faithful as a left module over the smash product $\Lambda \# {\mathcal H}.$

 Condition (ii) holds if the coradical of H is finite-dimensional or co-commutative (Skryabin - Van Oystaeyen 2006), or if H acts locally finitely on Λ (Skryabin 2020).

Examples

- 1. $\mathfrak{H} = \Bbbk G$, G acting faithfully on a noetherian integral domain Λ .
- 2. V finite-dimensional complex vector space, $\mathcal{H} = S(V) \rtimes W$, $\Lambda = \mathbb{C}[V], W \leq GL(V).$
- 3. G connected complex affine algebraic group, $\mathcal{H} = U(\mathfrak{g}) \rtimes W$, $\Lambda = \mathbb{C}[G]$, W group acting on $\mathbb{C}[G] \# U(\mathfrak{g})$, faithfully on $\mathbb{C}[G]$ and by Hopf algebra automorphisms on $U(\mathfrak{g})$.
- 4. ${\mathcal H}$ Hopf algebra, L a field and a right ${\mathcal H}\text{-comodule}$ algebra. Suppose the Galois map

$$\beta: L \otimes_{L^{co\mathcal{H}}} L \to L \otimes \mathcal{H}, \quad a \otimes b \mapsto ab_{(0)} \otimes b_{(1)}$$

is surjective. Let $\Lambda \subset L$ be a noetherian \mathcal{H}° -module subalgebra with fraction field L. Then $(\mathcal{H}^{\circ}, \Lambda)$ is a setting.

- 5. If (\mathcal{H}, Λ) is a setting and \mathcal{H}' is a Hopf subalgebra of \mathcal{H} , then (\mathcal{H}', Λ) is a setting.
- 6. If (\mathcal{H}, Λ) is a setting, then $(\mathcal{H}[\frac{\partial}{\partial t}], \Lambda[t])$ is a setting.

\mathcal{H} -Galois Λ -orders

Definition (H* 2021)

Let (\mathcal{H}, Λ) be a setting. An \mathcal{H} -Galois Λ -order is a subalgebra $F \subset L \# \mathcal{H}$ such that

- (i) $\Lambda \subset F$,
- (ii) $LF = L \# \mathcal{H}$,
- (iii) $\widehat{X}(\Lambda) \subset \Lambda$ for all $X \in F$.
 - ▶ If $X = \sum_{i} f_{i}h_{i} \in L \# \mathcal{H}$, where $f_{i} \in L$, $h_{i} \in \mathcal{H}$, then $\widehat{X} \in \text{End}(L)$ is given by $\widehat{X}(f) = \sum_{i} f_{i}(f_{i} \in L) = \sum_{i} f_{i}(f_{i} \in L)$

$$\hat{X}(f) = \sum_{i} f_i \cdot (h_i \triangleright f) \in L, \quad \forall f \in L.$$

F is a "noncommutative" order in the sense that Λ is not contained in the center of F. In many important examples, Z(F) = k.

Examples

The standard ℋ-Galois Λ-order is defined by

$$\mathfrak{F}(\mathfrak{H},\Lambda) = \{ X \in L \# \mathfrak{H} \mid \widehat{X}(\Lambda) \subset \Lambda \}.$$

- If G is a group acting faithfully on Λ, a kG-Galois Λ-order is roughly the same as Webster's principal flag orders.
- ► Rational Cherednik algebras are examples of H-Galois A-orders in the setting (H, A) = (S(V) ⋊ W, C[V]) (via Dunkl-Opdam polynomial representation).

Theorems

First results

Lemma

(i) The short exact sequence of left $\Lambda\text{-module}$

$$0 \to \Lambda \to F \to F/\Lambda \to 0$$

splits. A splitting map $F \to \Lambda$ is given by $X \mapsto \widehat{X}(1_{\Lambda})$.

(ii) Λ is maximal commutative in F.

- (iii) $Z(F) = \Lambda^{\mathcal{H}}$.
- (iv) Λ is a Harish-Chandra subalgebra of F.

Proof.

(ii) If $X \in F$ satisfies Xa = aX for all $a \in \Lambda$, put $Y = X - \widehat{X}(1_{\Lambda})$. Then

$$\widehat{Y}(a) = \widehat{X}(a) - \widehat{X}(1_{\Lambda})a = (\widehat{X}\widehat{a} - \widehat{a}\widehat{X})(1_{\Lambda}) = 0 \implies Y = 0.$$

Theorems

Canonical modules of local distributions

For a maximal ideal $\mathfrak m$ of $\Lambda,$ put

$$\mathsf{Dist}(\Lambda,\mathfrak{m}) = \{\xi \in \Lambda^* \mid \mathfrak{m}^n \subset \ker \xi, n \gg 0\}.$$

The space of local distributions is

$$\mathsf{Dist}(\Lambda) = \bigoplus_{\mathfrak{m}} \mathsf{Dist}(\Lambda, \mathfrak{m})$$

where \mathfrak{m} ranges over maximal ideals of finite codimension.

Theorem (H* 2021)

Let F be an \mathcal{H} -Galois Λ -order and consider Λ^* as a left F^{op}-module.

- (i) $Dist(\Lambda)$ is an F^{op} -submodule of Λ^* ,
- (ii) $Dist(\Lambda)$ is a Harish-Chandra module with respect to Λ ,

(iii) If $\lambda : \Lambda \to \Bbbk$ is an algebra map with kernel \mathfrak{m}_{λ} , then the cyclic F^{op} -submodule of $\text{Dist}(\Lambda)$ generated by λ has a unique simple quotient $V(\lambda)$. Moreover, $V(\lambda)$ is a simple Harish-Chandra module with $V(\lambda)^{\mathfrak{m}_{\lambda}} \neq 0$.

Theorems

The stabilizer

Analogous but incomparable to Schneider 1990:

Definition (H* 2021)

Let (\mathcal{H}, Λ) be a setting and \mathfrak{m} be a maximal ideal of Λ . The *stabilizer* of \mathcal{H} at \mathfrak{m} is defined as $\mathsf{Stab}(\mathcal{H}, \mathfrak{m}) = \mathcal{H}/\mathcal{S}(\mathcal{H}, \mathfrak{m})$ where $\mathcal{S}(\mathcal{H}, \mathfrak{m})$ is the unique maximal subcoalgebra \mathcal{C} such that for every finite-dimensional subcoalgebra \mathcal{C}' of \mathcal{C} there exists $R = \sum_i r_i \otimes s_i \in \Lambda \otimes \Lambda$ which is invertible mod $\mathfrak{m} \otimes \Lambda + \Lambda \otimes \mathfrak{m}$ and $\sum_i r_i \cdot (x \triangleright s_i) = 0$ for all $x \in \mathcal{C}'$.

Example

If $\mathcal{H} = \mathcal{H}' \rtimes G$ where \mathcal{H}' is a connected Hopf algebra and G is a group, then $\mathcal{S}(\mathcal{H}, \mathfrak{m}) = \mathcal{H}' \otimes \bigoplus_{g \in G, g(\mathfrak{m}) \neq \mathfrak{m}} \Bbbk g$ and hence

$$\mathsf{Stab}(\mathfrak{H},\mathfrak{m})\cong\mathfrak{H}'\otimes \Bbbk\,\mathsf{Stab}(G,\mathfrak{m})$$

where $\operatorname{Stab}(G, \mathfrak{m}) = \{g \in G \mid g(\mathfrak{m}) = \mathfrak{m}\}.$

Finiteness theorem

Theorem (H* 2021)

Let (\mathfrak{H}, Λ) be a setting and \mathfrak{m} be a maximal ideal of Λ of finite codimension. Assume that $Stab(\mathfrak{H}, \mathfrak{m})$ is finite-dimensional. Then for any \mathfrak{H} -Galois Λ -order F, $\widehat{F}_{\mathfrak{m}}$ is finitely generated as a left and right $\widehat{\Lambda}_{\mathfrak{m}}$ -module. Thus

- (i) There are only finitely many isomorphism classes of simple Harish-Chandra F-modules V such that $V^{\mathfrak{m}} \neq 0$.
- (ii) For any simple Harish-Chandra F-module V, the generalized weight space V^m is finite-dimensional,

and the same holds for F^{op} .

Definition (H* 2021)

A spherical Galois order with respect to $(\mathcal{H}', W, \Lambda)$ is a subalgebra U of $(L \# \mathcal{H})^W$ such that

(i)
$$\Lambda^W \subset U$$
,

(ii)
$$L^W U = (L \# \mathcal{H})^W$$
,

(iii)
$$\widehat{X}(\Lambda^W) \subset \Lambda^W$$
 for all $X \in U$.

Example

- ▶ Principal Galois orders (H* 2017): $\mathcal{H}' = \mathbb{k}\mathcal{M}$ group algebra. This includes
 - ► $U(\mathfrak{gl}_n) \hookrightarrow (\mathbb{C}(x_{ki} \mid 1 \le i \le k \le n) \# \mathbb{C}\mathbb{Z}^{n(n-1)/2})^{S_1 \times S_2 \times \cdots \times S_n}$ (Futorny-Ovsienko 2010)
 - $U_q(\mathfrak{gl}_n)$ (Hartwig 2017)
 - ▶ finite W-algebras of type A (Futorny-Molev-Ovsienko 2010)
 - Coulomb branches (Webster 2019)
- Spherical subalgebras of rational Cherednik algebras

Lemma (H* 2021)

Let F be an \mathcal{H} -Galois Λ -order where $\mathcal{H} = \mathcal{H}' \rtimes W$, $|W| \in \mathbb{k}^{\times}$. Put $e = \frac{1}{|W|} \sum_{w \in W} w$. Then the centralizer subalgebra eFe is isomorphic to a spherical Galois order U. Conversely, any spherical Galois order occurs this way.

Corollary (H* 2021)

Let U be a spherical Galois order with respect to $(\mathcal{H}', W, \Lambda)$. Let \mathfrak{m} be a maximal ideal of Λ of finite codimension such that the stabilizer Stab $(\mathcal{H}' \rtimes W, \mathfrak{m})$ is finite-dimensional. Let $\mathfrak{n} = \Lambda^W \cap \mathfrak{m}$. Then

(i) $Irr(U, \mathfrak{n})$ is finite,

(ii) for any $[V] \in Irr(U, \mathfrak{n})$, $V^{\mathfrak{n}}$ is finite-dimensional, and the same holds for U^{op} .

Future

Open problems

- What can be said in settings (ℋ[◦], Λ) where Λ is possibly noncommutative but Λ^{co ℋ} ⊂ Λ is a Hopf-Galois extension?
- When is F free/flat/projective as a left Λ-module? (Ovsienko's theorem says U(gl_n) is free as a left Γ-module.)
- ▶ Study various examples in more detail (eg. compute dim V^m).

Future

Open problems

- What can be said in settings (ℋ[◦], Λ) where Λ is possibly noncommutative but Λ^{co ℋ} ⊂ Λ is a Hopf-Galois extension?
- When is F free/flat/projective as a left Λ-module? (Ovsienko's theorem says U(gl_n) is free as a left Γ-module.)
- ▶ Study various examples in more detail (eg. compute dim V^m).

Thank you for your attention.