On the Diagonal Reduction Algebra for $\mathfrak{osp}(1|2)$

Jonas T. Hartwig Dwight Anderson Williams II

Based on arXiv:2106.04380 and arXiv:2203.08068

March 26, 2022

Jonas Hartwig (Iowa State University) On the Diagonal Reduction Algebra for osp(1|2)

Extremal Projector

(Asherova, Smirnov, Tolstoy, ... 1971–)

- ▶ $H = H_- \otimes H_0 \otimes H_+$ Hopf superalgebra with triangular decomposition
- C a subcategory of H-Mod
- ▶ $I_{\pm} = \ker \varepsilon_{H_{\pm}}$ augmentation ideals
- ▶ functors $(-)^+$, $(-)_- : \mathcal{C} \to \text{Vec}$:

$$V^+ = \text{``ker } I_+\text{''} = \{v \in V \mid I_+v = 0\}$$
 (invariants)

$$V_{-} =$$
 "coker I_{-} " = $V/I_{-}V$ (coinvariants)

• Inclusion $\iota_V: V^+ \to V$ and projection $\pi_V: V \to V_-$ compose to

$$\mathsf{Q}_V:V^+ o V_ v\mapsto v+I_ \rightsquigarrow \mathsf{Q}:(-)^+\Rightarrow (-)_-$$

Definition (HW 2021)

The extremal projector P for H in C is the inverse of Q (if it exists). Then $P_V := \iota_V \circ P_V \circ \pi_V$ is a linear map $V \to V$ for any $V \in H$ -Mod, satisfying

$$I_+P_V = 0 = P_V I_- \qquad P^2 = P \qquad P_V \circ \iota_V = \iota_V \qquad \pi_V \circ P_V = \pi_V$$

Jonas Hartwig (Iowa State University) On the Diagonal Reduction Algebra for osp(1|2)

Examples

Theorem (Tolstoy 1985)

If $\mathfrak{g} = \mathfrak{g}_- \oplus \mathfrak{h} \oplus \mathfrak{g}_+$ is a fin-dim'l complex reductive classical Lie superalgebra with a non-degenerate Killing form, then $H = U(\mathfrak{g})$ has an extremal projector in the category \mathfrak{C} of locally \mathfrak{g}_+ -finite weight modules with non-integral support.

Example

For $\mathfrak{g} = \mathfrak{sl}(2)$: $P = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(h+\rho(h)+n)_n} f^n e^n$ where $\rho(h) = 1$ and $(x)_n = x(x-1)\cdots(x-n+1)$ is the falling factorial.

Remark

If $V \in \mathbb{C}$ is semisimple then weight bases for V^+ are in bijection with decompositions of V into irreducible g-submodules.

Mickelsson's Step Algebra

(Mickelsson, van den Hombergh, Zhelobenko, Khoroshkin, Ogievetsky,...)

- ▶ $\mathfrak{g} \subset \mathfrak{G}$ reductive pair of fin-dim'l complex Lie (super)algebras
- $\mathfrak{g} = \mathfrak{g}_- \oplus \mathfrak{h} \oplus \mathfrak{g}_+$ triangular decomposition
- ► $U = U(\mathfrak{G})$
- ▶ $I = U\mathfrak{g}_+$ left ideal
- ▶ $N = N_U(I) = \{u \in U \mid Iu \subset I\}$ normalizer
- $S(\mathfrak{G},\mathfrak{g}) = N/I$ Mickelsson's step algebra (1973)
- ▶ If V is a $U(\mathfrak{G})$ -module then $V^+ = \{v \in V \mid \mathfrak{g}_+ v = 0\}$ is an $S(\mathfrak{G}, \mathfrak{g})$ -module: $\mathfrak{g}_+ uv \subset luv \subset lv = 0$ for $u \in N$, $v \in V^+$.

Theorem (van den Hombergh 1975)

If V is a locally g-finite irreducible $U(\mathfrak{G})$ -module, then V⁺ is an irreducible $S(\mathfrak{G},\mathfrak{g})$ -module.

Difficulties with $S(\mathfrak{G},\mathfrak{g})$

- S(𝔅,𝔅) is not a finitely generated C-algebra. How can one write down elements of S(𝔅,𝔅)?
- 2. How can one effectively find relations among elements?

Remarkable Observation

(Zhelobenko 1985)

Let $V = U/I = U(\mathfrak{G})/U(\mathfrak{G})\mathfrak{g}_+$, regarded as a left \mathfrak{g} -module. Then

$$V^+ = \{u + I \mid \mathfrak{g}_+ u \subset I\} = N/I = S(\mathfrak{G}, \mathfrak{g}).$$

In other words, the step algebra itself is the space of \mathfrak{g}_+ -invariants in the universal relative Verma module U/I.

Therefore, if we can use the extremal projector P we can describe $S(\mathfrak{G},\mathfrak{g})$ and resolve the difficulties.

Zhelobenko's Reduction Algebra

To deploy P one replaces U by $U' = U(\mathfrak{G})[(h_{\alpha} - n)^{-1} | n \in \mathbb{Z}, \alpha \in \Phi(\mathfrak{g})]$ in the construction of $S(\mathfrak{G}, \mathfrak{g})$ to obtain

$$Z(\mathfrak{G},\mathfrak{g})=N_{U'}(I')/I', \quad I'=U'\mathfrak{g}_+$$

which is called the *reduction algebra* of the pair $\mathfrak{g} \subset \mathfrak{G}$. This ensures that U'/I' is an object of \mathfrak{C} so that we have (assuming now \mathfrak{g} is as in Tolstoy 1985):

$$P_{U'/I'}: U'/I' \twoheadrightarrow (U'/I')^+ = Z(\mathfrak{G},\mathfrak{g})$$

The following addresses the "difficulties":

Theorem

- Decompose 𝔅 = 𝔅 ⊕ 𝔅 as 𝔅-modules. Then the image of 𝔅 in Z(𝔅,𝔅) generates Z(𝔅,𝔅) as a U'(𝔥)-ring. (Mickelsson 1973)
- 2. The bijection $Q_{U/I} : Z(\mathfrak{G}, \mathfrak{g}) \to (U/I)_{-} = \mathfrak{g}_{-}U \setminus U/U\mathfrak{g}_{+}$ equips the double coset space with a product $\bar{u} \Diamond \bar{v} = \overline{uPv}$. (Khoroshkin-Ogievetsky 2008)

Previous Work

The reduction algebras $Z(\mathfrak{G},\mathfrak{g})$ have been studied extensively when $\mathsf{rk}\,\mathfrak{G}\leq 1+\mathsf{rk}\,\mathfrak{g}$, including for

- $(\mathfrak{G},\mathfrak{g}) = (\mathfrak{g}(n),\mathfrak{g}(n-1))$ where $\mathfrak{g}(n) = \mathfrak{gl}(n),\mathfrak{sl}(n),\mathfrak{so}(n)$ (van den Hombergh 1976; Zhelobenko 1983–)
- $(\mathfrak{G},\mathfrak{g}) = (\mathfrak{g}(n),\mathfrak{g}(n-1))$ where $\mathfrak{g}(n) = \mathfrak{gl}(m|n),\mathfrak{osp}(n|2m), m$ fixed (Tolstoy 1986)

▶
$$(\mathfrak{G},\mathfrak{g}) = (\mathfrak{so}(n),\mathfrak{so}(n-2))$$
 and $(\mathfrak{sp}(2n),\mathfrak{sp}(2n-2))$ (Molev 2000).

The quantum analog of the reduction algebra, $Z_q(\mathfrak{G}, \mathfrak{g})$, associated to $U_q(\mathfrak{g}) \subset U_q(\mathfrak{G})$ has also been studied for $(\mathfrak{G}, \mathfrak{g}) = (\mathfrak{g}(n), \mathfrak{g}(n-1))$ where $\mathfrak{g}(n) = \mathfrak{su}(n)$ (Tolstoy 1990)

•
$$\mathfrak{g}(n) = \mathfrak{su}(1|n)$$
 (Palev-Tolstoy 1991)

• $\mathfrak{g}(n) = \mathfrak{so}(n)$ and $\mathfrak{sp}(2n)$ (Ashton-Mudrov 2015)

Diagonal Reduction Algebras

For a reductive Lie superalgebra \mathfrak{g} , take $\mathfrak{G} = \mathfrak{g} \times \mathfrak{g}$. The diagonal embedding $\mathfrak{g} \subset \mathfrak{g} \times \mathfrak{g}$ gives rise to $DR(\mathfrak{g}) = Z(\mathfrak{g} \times \mathfrak{g}, \mathfrak{g})$ called the *diagonal* reduction algebra of \mathfrak{g} .

Theorem (Khoroshkin-Ogievetsky 2011, 2017)

For $\mathfrak{g} = \mathfrak{gl}(n)$:

- 1. Complete presentations of DR(g) including one in terms of the reflection equation from R-matrix formalism.
- 2. Construction of 2n central elements of $DR(\mathfrak{g})$ that conjecturally generate the whole center.
- 3. $DR(\mathfrak{g})$ has the structure of a braided bialgebra.

The Orthosymplectic Lie Superalgebra $\mathfrak{osp}(1|2)$

Jonas Hartwig (Iowa State University) On the Diagonal Reduction Algebra for osp(1|2)

Main Result 1

Theorem (HW 2021)

- 1. Complete presentation of $DR(\mathfrak{osp}(1|2))$ by generators and relations.
- 2. PBW type basis.

Gorelik's Ghost Center

The *center* of an associative superalgebra A consists of all sums of homogeneous z satisfying

$$za = (-1)^{|z||a|}az$$

for all homogeneous $a \in A$.

Definition (Gorelik 2000)

1. The anti-center $\Sigma = \Sigma(A)$ of an associative superalgebra A is given by all sums of homogeneous z satisfying

$$za=(-1)^{(|z|+\overline{1})|a|}az$$

for all homogeneous $a \in A$.

2. The ghost center is $\mathbb{X}(A) = Z(A) \oplus \mathbb{Y}(A)$.

Main Result 2: Ghost Center of $DR(\mathfrak{osp}(1|2))$ Put

- ▶ $\mathfrak{g} = \mathfrak{osp}(1|2)$
- $C \in Z(U(\mathfrak{g}))$ the Casimir element
- $Q \in \Sigma(U(\mathfrak{g}))$ the Scasimir element (Leśniewski 1995)

Theorem (HW 2022)

Let $A = DR(\mathfrak{osp}(1|2))$. The ghost center X(A) is generated by the three elements

$$\mathbb{C}_{\pm} := C \otimes 1 \pm 1 \otimes C + I \in Z(A),$$

 $\mathbb{Q}:=Q\otimes Q+I\in \Sigma(A).$

Moreover, there is an injective algebra map

$$\varphi: \mathbb{X}(A) \to \mathbb{C}[x, y]$$

such that $\varphi(\mathbb{C}_+) = x^2 + y^2$, $\varphi(\mathbb{C}_-) = 2xy$, $\varphi(\mathbb{Q}) = x^2 - y^2$.

Jonas Hartwig (lowa State University) On the Diagonal Reduction Algebra for $\mathfrak{osp}(1|2)$

Main Result 3: Irreps of $DR(\mathfrak{osp}(1|2))$

Theorem (HW 2022)

Let $A = DR(\mathfrak{osp}(1|2))$.

1. For every odd positive integer n and every $(\lambda, \mu) \in \mathbb{C} \times (\mathbb{C} \setminus \mathbb{Z})$ satisfying

$$\lambda^2 = (\mu + n)^2$$

there is an irreducible n-dimensional representation $L(\lambda, \mu)$ of A such that the action of the ghost center on $L(\lambda, \mu)$ is given by

$$\mathbb{C}_+\mapsto\lambda^2+\mu^2\qquad\mathbb{C}_-\mapsto2\lambda\mu\qquad\mathbb{Q}\mapsto(\lambda^2-\mu^2)(-1)^{|\cdot|}$$

where $(-1)^{|\cdot|} \in \operatorname{End}_{\mathbb{C}}(L(\lambda,\mu))$ sends homogeneous v to $(-1)^{|v|}$.

2. Every finite-dimensional irreducible representation of A has odd dimension and is isomorphic to $L(\lambda, \mu)$ for a unique pair (λ, μ) satisfying $\lambda^2 = (\mu + \dim V)^2$.

Application to Tensor Product Decompositions

Let $\mathfrak{g} = \mathfrak{osp}(1|2)$. For $\ell \in \mathbb{Z}_{\geq 0}$, let $V(\ell)$ be the $(1 + 2\ell)$ -dimensional irrep of \mathfrak{g} , and $\mathbb{C}[x] = V(-1/2)$ be the polynomial irrep of \mathfrak{g} . We know:

$$V(\ell) \otimes V(\ell') \cong \bigoplus_{j=-|\ell-\ell'|}^{\ell+\ell'} V(j)$$
 (Scheunert-Nahm-Rittenberg 1977)
 $\mathbb{C}[x] \otimes V(1) \cong \bigoplus_{j=0}^{2} V(1 - \frac{1}{2} - j)$ (special case of Coulembier 2013)

Theorem (HW 2022)

$$\mathbb{C}[x]\otimes V(\ell)= igoplus_{j=0}^{2\ell}U(\mathfrak{g}_-)L^j(1\otimes v_\ell)$$

where $L \in N \subset U(\mathfrak{g} \times \mathfrak{g})$ is a lowering operator explicitly given in a PBW basis for $\mathfrak{g} \times \mathfrak{g}$. Jonas Hartwig (Iowa State University) On the Diagonal Reduction Algebra for $\mathfrak{osp}(1|2)$ 15/16

Future directions

- Can DR(osp(1|2n)) be presented using R-matrix formalism, analogous to the reflection equation for DR(gl(n))?
- One can define $Z(A, \mathfrak{g})$ where A is an associative superalgebra and $\mathfrak{g} \to A$. We are interested in $Z(A_n(\mathbb{C}) \otimes U(\mathfrak{osp}(1|2n)), \mathfrak{osp}(1|2n))$ and applications to intertwining operators for $\mathbb{C}[x_1, \ldots, x_n] \otimes V(\lambda)$.

References

- 1. arXiv:2106.04380 [math.RT] *Diagonal reduction algebra for* osp(1|2) (in Theoretical and Mathematical Physics), with D.A. Williams II
- arXiv:2203.08068 [math.RT] Ghost center and representations of the diagonal reduction algebra of osp(1|2), with D.A. Williams II

Future directions

- Can DR(osp(1|2n)) be presented using R-matrix formalism, analogous to the reflection equation for DR(gl(n))?
- One can define $Z(A, \mathfrak{g})$ where A is an associative superalgebra and $\mathfrak{g} \to A$. We are interested in $Z(A_n(\mathbb{C}) \otimes U(\mathfrak{osp}(1|2n)), \mathfrak{osp}(1|2n))$ and applications to intertwining operators for $\mathbb{C}[x_1, \ldots, x_n] \otimes V(\lambda)$.

References

- 1. arXiv:2106.04380 [math.RT] *Diagonal reduction algebra for* osp(1|2) (in Theoretical and Mathematical Physics), with D.A. Williams II
- arXiv:2203.08068 [math.RT] Ghost center and representations of the diagonal reduction algebra of osp(1|2), with D.A. Williams II

Thank you for your attention.