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⟨( x2
−x1)⟩

Syzygies
A syzygy is a polynomial relation among a collection of polynomials

Example. , and 


Goal: Study syzygies of .

S = k[x0, x1, x2] I = ⟨x0x1, x0x2⟩

S/I

S(−2)2(x0x1 x0x2)
S/I0 S S(−3) 0( x2

−x1)
minimal free resolution

1

 is the 

module of 1st syzygies

⟨x0x1, x0x2⟩ is the 

module of 2nd syzygies

   x2(x0x1) − x1(x0x2) = 0
(1)x0x1 = 0
(1)x0x2 = 0

they give relations 

on the generator 1

they give relations 

on the generators


 and x0x1 x0x2



Syzygies
Any finitely generated graded -module  has a minimal free resolution:S M

⨁S(−j)β1,jM0 ⨁S(−j)β0,j ⋯

This lists all information about . If , then the minimal free resolution 
sees the geometry of .

M M = S/I
V(I)

Moral of syzygies: All degrees and ranks of syzygies are numerical invariants of !M

Problem: These are hard to find!

easier to find



Hilbert Syzygy Theorem and Stillman’s Conjecture
Hilbert Syzygy Theorem (1890). If  is finitely generated, the 
length of the minimal free resolution of   is bounded by .

I ⊆ k[x0, …, xn]
k[x0, …, xn]/I n + 1

Stillman’s Conjecture (2000). The projective dimension of  can 
be bounded in terms of the number and degree of the generators of , provided 
that  is given the standard grading.

k[x0, …, xn]/I
I

k[x0, …, xn]

projective dimension

Important bit: This bound is independent of how many variables are in the 
polynomial ring!



Hilbert Syzygy Theorem and Stillman’s Conjecture

Example. What is the projective dimension of 


? 
I = ⟨x1x4x7 + x10x13x16 , x2x5x8 + x11x14x17 , x3x6x9 + x12x15x18⟩

We could embed this into  and get the bound .k[x1, …, x18] 18

If we give each variable  degree , then  is generated by three 
cubics. If Stillman’s conjecture is true, then we could get some bound from 
this information alone. 

x1, …, x18 1 I

Stillmans conjecture is true and Mantero and McCullough proved that the 
bound for three cubics is 5.



The Stillman Story

First proof by Ananyan and Hochster in 2016, (re)introduced strength

Erman, Sam, Snowden shows that “projective dimension” can be swapped 
out with many other things

2016

2000

2019

Stillman conjectures the Stillman conjecture

Proven again by Erman, Sam, and Snowden

and then again by Draisma, Lasoń, and Leykin shortly after

2021

2018 Bik, Draisma, Eggermont prove that actually any nontrivial Zariski-closed 
condition on tensors that is functorial in the underlying vector space is 
detected by strength



The Ananyan-Hochster Principle
Definition. The strength of a homogeneous element  in a graded -algebra  is


 

the collective strength of a family  is the minimal strength of any nontrivial 
homogeneous -linear combination. 

f k R

str( f ) = min
k

{f =
k+1

∑
i=1

gihi ∣ gi, hi homogeneous positive degree elements of R}

{fi}
k

Moral: Polynomials of sufficiently large strength are regular sequences.

Examples. (a) , elements of  are finite strength str(something deg 1) = ∞ R2
+

(c) The polynomial  in  with standard grading has strength ∑n
i=1 xiyizi k[xi, yi, zi] n

(b)  exactly means  is reducible; e.g. str( f ) = 0 f str(x2 − y2) = 0



More precisely: Fix . There exists  such that if 
 are polynomials with degrees  with collective strength at least 

, then  are a regular sequence

d = (d1, …, dr) M(d)
f1, …, fr ∈ k[X] d
M f1, …, fr

The Ananyan-Hochster Principle

Proof Sketch: Suppose not….

Moral: Polynomials of sufficiently large strength are regular sequences.
Note: If collective strength of  is infinite in a polynomial ring, then  form a 
regular sequence.

⟨ fi⟩ fi

⟨ f1,1, …, f1,r⟩ ∈ k[X1]
⟨ f2,1, …, f2,r⟩ ∈ k[X2]

⋮

unbounded collective 
strength but none are 
a regular sequence

⟨f1, …, fr⟩ ∈ k[X]
infinite collective 
strength but not a 
regular sequence

some sort of nice 
limiting object

(more later)

(degree )d



The Quest for Multigraded Analogues

Increasing structure

Polynomials Graded Polynomials Multigraded Polynomials
or -graded polynomialsℤ or -graded polynomialsℤr

5xy + y2 − x3 x2
0 + 3x1x3 − 6x2

2 x3
0y2

1 − 2x0x2
1 y0y1

degree = (3,2) ∈ ℤ2degree = 2 ∈ ℤ

affine geometry projective geometry toric geometry

What if  is not standard graded?k[x1, …, xn]

[Haiman, Sturmfelds ’02] [Maclagan, Smith ’04] [Hering, Schenck, Smith ’06] [Costa, Miró-Roig ’06] 

[Tai Há ’07] [Lozovanu, Smith ’12] [Yang ’19] [Berkesch, Erman, Smith ’20] [Chardin, Nemati ’20] 


[Chardin, Holanda ’22] [Bruce, Heller, Sayrafi ’22] [Brown, Sayrafi ’22] [Booms, Cobb ’22] [Cobb ’24]



The Quest for Multigraded Analogues

Example. Let  be the Cox ring of  with the 
associated -grading:


S = k[x0, x1, y0, y1, y2] ℙ1 × ℙ2

ℤ2

 and deg(xi) = (1,0) deg(yi) = (1,0)

The strength of any homogeneous polynomial in  is bounded by . This is 
NOT true in the standard graded case.

S 2



The Quest for Multigraded Analogues

Example. Let  be a -graded polynomial ring where all 
variables are given degree . The homogeneous ideal 





is generated by degree  elements.


McCullough showed that . 


This is a counterexample to Stillman’s conjecture (with this grading) because we 
can increase  above any potential bound.

S = k[x, y, z1, …, zn] ℚ
1/n

I = ⟨xn, yn, xn−1z1 + xn−2yz2 + ⋯ + xyn−2zn−1 + yn−1zn⟩

1

pdimS(S/I) = n + 2

n

So maybe we want to avoid having infinite decreasing sequences…. 
That is, we want the grading to be well founded.



The Main Theorems

A grading of a polynomial ring  by an abelian group  is a decomposition 
of  into -submodules  with .

S = k[X] Γ
S k S = ⨁

g∈Γ

Sg Sg ⋅ Sh ⊆ Sg⋅h

The support of  is a submonoid  generated by the degrees of all the monomials 
along with the identity. We’ll say  is connected if .

Γ Λ
S S0 = k

 (or ) has bounded factorization if it is impossible to express an element in  
in terms of arbitrarily large sums of other elements in 
Λ S Λ

Λ

bounded factorization  well founded⟹

Fact. If  is connected and  is finitely generated then  has bounded factorizationS Λ Λ



The Main Theorems

Theorem (Cobb, Gallup, Spoerl). For any degree sequence  from 

, there is a number  bounding the projective dimension of any ideal with 
degree sequence bounded by  in any connected -graded polynomial ring with 
support contained in  if and only if  has bounded factorization.

d = (d1, …, dn)
Λ N(Λ, d)

d Γ
Λ Λ

Meta-Theorem (Cobb, Gallup, Spoerl). If  has bounded factorization, then 
the Ananyan-Hochster principle holds.

Λ



The Main Theorems
Theorem (Cobb, Gallup, Spoerl). For any degree sequence  from 

, there is a number  bounding the projective dimension of any ideal with 
degree sequence bounded by  in any connected -graded polynomial ring with 
support contained in  if and only if  has bounded factorization.

d = (d1, …, dn)
Λ N(Λ, d)

d Γ
Λ Λ

Is there any wiggle room here?
• The algebras need to be polynomial ring; it needs to be regular, but regular 

and graded implies polynomial.

• What about connectedness?  must necessarily be pointed (  
implies ), which is implied by connected. If  then there 
is no Stillman bound. What about  Polynomial ring over a PID?

Λ q + q′￼ = 0
q = q′￼ = 0 S0 = k[x, y]

S0 = k[x]?



Example. fi S = k[x1, x2, …]

The Main Theorems: Examples

j p mod 1

j q mod 1

(1,1)
(1,2)
(1,3)
(1,4)
(1,5)

(2,1)
(2,2)
(2,3)
(2,4)
(2,5)

(3,1)
(3,2)
(3,3)
(3,4)
(3,5)

(4,1)
(4,2)
(4,3)
(4,4)
(4,5)

(5,1)
(5,2)
(5,3)
(5,4)
(5,5)

We will give it a -grading associated with a choice of primes . ℤ2 p, q

First, note: The sequence                        is equidistributed on the unit square.

For any  this grading has support 
generated by , is connected, and has 
bounded factorization.

p, q
(1,1)

 has Stillman bounded projective 
dimension.
⟹ S

Let  be the label of the bucket

lands in

deg(xj)
j p mod 1

j q mod 1



The Main Theorems: Examples

Example. What is the projective dimension of 


? 
I = ⟨x1x4x7 + x10x13x16, x2x5x8 + x11x14x17, x3x6x9 + x12x15x18⟩

Mantero and McCullough proved that the bound for three cubics is 5.

Consider the -grading: ℤ3

deg(xj) =
(1,0,0) if j = 1 mod 3,
(0,1,0) if j = 2 mod 3,
(0,0,1) if j = 0 mod 3.

 now has degree sequence  and the Stillman bound 
 is 3.

I e = ((3,0,0), (0,3,0), (0,0,3))
N(Λ, e)



Ultraproducts

An ultraproduct  of a family  keeps track of generic properties of the family. A {Ai}i∈I

⟨ f1,1, …, f1,r⟩ ∈ k[X1]
⟨ f2,1, …, f2,r⟩ ∈ k[X2]

unbounded collective 
strength but none are 
a regular sequence

⟨f1, …, fr⟩ ∈ k[X]
infinite collective 
strength but not a 
regular sequence

some sort of nice 
limiting object

Recall:

the ultraproduct

Less explicit than many other options, but it has extremely remarkable logical 
properties determining essentially all behavior.
(one of which guarantees that it’s meaningful to take limits of arbitrary sequences of 
polynomials as above)

Erman, Sam, Snowden do 
this, but do not use logic!



Ultraproducts and Model Theory
An ultraproduct  of a family  keeps track of generic properties of the family. A {Ai}i∈I

Less explicit than many other options, but it has extremely remarkable logical 
properties determining essentially all behavior.
1. Łoś’ Theorem: 

2.  Expansion: 

3.  Saturation: 

First order properties of  are exactly those determined by the first 
order properties of 

A
Ai

Ultraproducts behave well when you add new symbols to your 
language
Ultraproducts contain “all limits”

Why use model theory? We can get a cleaner proof, are able to see what exactly is 
necessary for Stillman bounds, and can prove things you otherwise could not when 
working “by hand”.

 Proof of Stillman’s Conjecture: Being a regular sequence is first order.⟹



Ultraproducts and Model Theory
An ultraproduct  of a family  keeps track of generic properties of the family. A {Ai}i∈I

Less explicit than many other options, but it has extremely remarkable logical 
properties determining essentially all behavior.
1. Łoś’ Theorem: 

2.  Expansion: 

3.  Saturation: 

First order properties of  are exactly those determined by the first 
order properties of 

A
Ai

Ultraproducts behave well when you add new symbols to your 
language
Ultraproducts contain “all limits”

Why use model theory? We can get a cleaner proof, are able to see what exactly is 
necessary for Stillman bounds, and can prove things you otherwise could not when 
working “by hand”.

 Proof of Stillman’s Conjecture: Being a regular sequence is first order.⟹

 As a set,  can very nasty⟹ A



Ultraproducts and Model Theory
The Problem
It would be nice, for example, if ultraproducts of polynomial rings were 
polynomial rings.

Examples. Let’s take the family . The ultraproduct  is not close to 
being a polynomial ring. Consider the sequence of elements  
corresponds to an element  in the ultraproduct, but it must have infinite degree!

{k[x]}i∈ℕ R
{1,x, x2, …, }

r
In fact,  contains  but is strictly worse.R k[[x]]

We instead define the -bounded ultraproduct , which for graded 
algebras, is a substructure of  generated by homogeneous elements whose 
degree is less than some already existing degree in .

Λ AΛ
A

Λ



Degree Bounded Ultraproducts
Theorem (Cobb, Gallup, Spoerl). A graded version of Łoś’ Theorem, Expansion, 
and Saturation which holds for formulas with “degree bounded quantifiers”.

Corollary (Cobb, Gallup, Spoerl).  Let  be -graded -algebras. Then 
 is a -graded -algebra with  equal to the elements  where 

 almost everywhere.

(Ri)i∈I Λ k
RΛ Λ k (RΛ)g {ri}i∈I

deg(ri) = g

Our definition is forced upon you if you wish your ultraproduct of graded 
algebras to still be a graded algebra: 



What we buy with logic
Corollary (Cobb, Gallup, Spoerl). We have the following:

(a)  is well founded iff  has bounded factorization


(b)  is a field iff  is a field a.e. (+ some results about how characteristics carry over)


(c) So long as  has bounded factorization,  is a polynomial ring iff  are polynomial rings a.e.

(d) integral domain, reduced, irreducible, connectedness…..

Λ Λ
k ki

Λ RΛ Ri

Corollary (Cobb, Gallup, Spoerl). Fix a sequence  and .


(a)  is an ideal iff  are ideals a.e.


(b)  is a prime ideal iff  are prime ideals a.e.


(c)  is a homogeneous element iff  are homogeneous elements of  of bounded degree a.e.


(d) Strength of  is finite iff strength of  bounded a.e.


(e)  is a regular sequence iff  is a regular sequence with uniformly bounded degree 
a.e.

Ri Ii ⊆ Ri

I I∙

I I∙

f f∙ R∙

f f∙
f1, …, fn f∙,1, …, f∙,n
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f f∙ R∙

f f∙
f1, …, fn f∙,1, …, f∙,n



What we buy with logic

Corollary.  is a prime ideal iff  are prime ideals a.e.I I∙
Proof. Let  be any ideal. Due to the expansion property, we can add a 
predicate  to our language which is true when . The property of being 
prime can now be written:





This confirms that primeness is first order. Now, Łoś guarantees the iff above.

I
I(x) x ∈ I

∀r, s ∈ R+ [I(r ⋅ s) → (I(r) ∨ I(s))]



Open Questions

1. What other algebraic facts are easy from this perspective? 

2.  Degree bounded ultraproducts package up a common argument that is not 
restricted to Stillman’s conjecture. What else can we do?



Thanks!!



A Crash Course in Model Theory

A structure  in a language  has a universe  and interpretations for:


• predicate symbols in  (this is a function )


• function symbols in  (this is a function )


• constant symbols in  (this is a 0-ary function) 

ℳ ℒ M

ℒ M → {true, false}

ℒ M → M

ℒ

Example. The language of ordered rings might have function symbols 
, predicate symbols , and constant symbols .


An -structure might be , with the obvious interpretation for the 
symbols above.

{ + , − , ⋅ } { ≤ } {0,1}

ℒ M = ℝ



A Crash Course in Model Theory

We can then build words of  by concatenating symbols together with variable 
symbols  using logical connectives ( ) and quantifiers 

. 


Formulas  are grammatical words. The notation  
means that the formula  is true in  when each  is interpreted by 
the corresponding parameter .


ℒ
(x1, x2, …) ∨ , ∧ , = , ¬

(∃, ∀)

φ(x1, …, xn) ℳ ⊧ φ(s1, …, sn)
φ(x1, …, xn) ℳ xi

si ∈ M

Example. Consider the ordered ring structure  with universe  from before.


We might require that, for example, the sentence  is true 
in .

ℳ ℝ

(∀x)[x ⋅ 1 = 1 ⋅ x = x]
ℳ


