Lattice points in slices of rectangular prisms

Daniel McGinnis

Iowa State University

Algebra and Geometry Seminar

This talk is based on joint work with Luis Ferroni "Lattice points in slices of prisms" (arXiv:2202.11808)

The hypersimplex

The hypersimplex $\Delta_{k, n}$ is defined by

The hypersimplex

The hypersimplex $\Delta_{k, n}$ is defined by

$$
\Delta_{k, n}=\left\{x \in[0,1]^{n}: \sum_{i=1}^{n} x_{i}=k\right\}
$$

The hypersimplex

The hypersimplex $\Delta_{k, n}$ is defined by

$$
\Delta_{k, n}=\left\{x \in[0,1]^{n}: \sum_{i=1}^{n} x_{i}=k\right\}
$$

It is of fundamental importance in

The hypersimplex

The hypersimplex $\Delta_{k, n}$ is defined by

$$
\Delta_{k, n}=\left\{x \in[0,1]^{n}: \sum_{i=1}^{n} x_{i}=k\right\}
$$

It is of fundamental importance in

- Matroid theory \rightarrow uniform matroids.

The hypersimplex

The hypersimplex $\Delta_{k, n}$ is defined by

$$
\Delta_{k, n}=\left\{x \in[0,1]^{n}: \sum_{i=1}^{n} x_{i}=k\right\} .
$$

It is of fundamental importance in

- Matroid theory \rightarrow uniform matroids.
- Graph theory \rightarrow the Johnshon graph.

The hypersimplex

The hypersimplex $\Delta_{k, n}$ is defined by

$$
\Delta_{k, n}=\left\{x \in[0,1]^{n}: \sum_{i=1}^{n} x_{i}=k\right\}
$$

It is of fundamental importance in

- Matroid theory \rightarrow uniform matroids.
- Graph theory \rightarrow the Johnshon graph.
- Grassmannians \rightarrow specifically TNN Grassmannian.

The hypersimplex

The hypersimplex $\Delta_{k, n}$ is defined by

$$
\Delta_{k, n}=\left\{x \in[0,1]^{n}: \sum_{i=1}^{n} x_{i}=k\right\}
$$

It is of fundamental importance in

- Matroid theory \rightarrow uniform matroids.
- Graph theory \rightarrow the Johnshon graph.
- Grassmannians \rightarrow specifically TNN Grassmannian.
- The theory of alcoved polytopes \rightarrow triangulations.

The hypersimplex

The hypersimplex $\Delta_{k, n}$ is defined by

$$
\Delta_{k, n}=\left\{x \in[0,1]^{n}: \sum_{i=1}^{n} x_{i}=k\right\}
$$

It is of fundamental importance in

- Matroid theory \rightarrow uniform matroids.
- Graph theory \rightarrow the Johnshon graph.
- Grassmannians \rightarrow specifically TNN Grassmannian.
- The theory of alcoved polytopes \rightarrow triangulations.
- Much more! (tropical geometry, coding theory, statistics of permutations, etc.)

Basic facts about the hypersimplex

Basic facts about the hypersimplex

Remark
The vertices of the hypersimplex $\Delta_{k, n}$ are all the $0 / 1$-vectors in \mathbb{R}^{n} that have exactly k ones.

Basic facts about the hypersimplex

Remark

The vertices of the hypersimplex $\Delta_{k, n}$ are all the $0 / 1$-vectors in \mathbb{R}^{n} that have exactly k ones.

In 1977 Stanley gave a combinatorial proof of the following fact

Basic facts about the hypersimplex

Remark

The vertices of the hypersimplex $\Delta_{k, n}$ are all the $0 / 1$-vectors in \mathbb{R}^{n} that have exactly k ones.

In 1977 Stanley gave a combinatorial proof of the following fact
Theorem
The volume of the hypersimplex $\Delta_{k, n}$ is

Basic facts about the hypersimplex

Remark

The vertices of the hypersimplex $\Delta_{k, n}$ are all the $0 / 1$-vectors in \mathbb{R}^{n} that have exactly k ones.

In 1977 Stanley gave a combinatorial proof of the following fact
Theorem
The volume of the hypersimplex $\Delta_{k, n}$ is

$$
\operatorname{vol}\left(\Delta_{k, n}\right)=\frac{1}{(n-1)!} A(n-1, k-1)
$$

where $A(n-1, k-1)=\left\{\sigma \in \mathfrak{S}_{n-1}\right.$ having $k-1$ descents $\}$.

Basic facts about the hypersimplex

Remark

The vertices of the hypersimplex $\Delta_{k, n}$ are all the $0 / 1$-vectors in \mathbb{R}^{n} that have exactly k ones.

In 1977 Stanley gave a combinatorial proof of the following fact
Theorem
The volume of the hypersimplex $\Delta_{k, n}$ is

$$
\operatorname{vol}\left(\Delta_{k, n}\right)=\frac{1}{(n-1)!} A(n-1, k-1)
$$

where $A(n-1, k-1)=\left\{\sigma \in \mathfrak{S}_{n-1}\right.$ having $k-1$ descents $\}$.
It follows from his proof that the hypersimplex admits a certain unimodular triangulation.

Lattice points \rightarrow Ehrhart polynomials

A vast generalization of the volume is the Ehrhart polynomial. To each polytope $\mathscr{P} \subseteq \mathbb{R}^{n}$ associate the function

Lattice points \rightarrow Ehrhart polynomials

A vast generalization of the volume is the Ehrhart polynomial. To each polytope $\mathscr{P} \subseteq \mathbb{R}^{n}$ associate the function

$$
t \mapsto \#\left(t \mathscr{P} \cap \mathbb{Z}^{n}\right)
$$

This happens to be a polynomial that we denote $\operatorname{ehr}(\mathscr{P}, t)$. If $d:=\operatorname{dim} \mathscr{P}$ and

Lattice points \rightarrow Ehrhart polynomials

A vast generalization of the volume is the Ehrhart polynomial. To each polytope $\mathscr{P} \subseteq \mathbb{R}^{n}$ associate the function

$$
t \mapsto \#\left(t \mathscr{P} \cap \mathbb{Z}^{n}\right)
$$

This happens to be a polynomial that we denote $\operatorname{ehr}(\mathscr{P}, t)$. If $d:=\operatorname{dim} \mathscr{P}$ and

$$
\operatorname{ehr}(\mathscr{P}, t)=a_{d} t^{d}+a_{d-1} t^{d-1}+\cdots+a_{1} t+a_{0}
$$

then

Lattice points \rightarrow Ehrhart polynomials

A vast generalization of the volume is the Ehrhart polynomial. To each polytope $\mathscr{P} \subseteq \mathbb{R}^{n}$ associate the function

$$
t \mapsto \#\left(t \mathscr{P} \cap \mathbb{Z}^{n}\right)
$$

This happens to be a polynomial that we denote $\operatorname{ehr}(\mathscr{P}, t)$. If $d:=\operatorname{dim} \mathscr{P}$ and

$$
\operatorname{ehr}(\mathscr{P}, t)=a_{d} t^{d}+a_{d-1} t^{d-1}+\cdots+a_{1} t+a_{0}
$$

then

- $a_{d}=\operatorname{vol}(\mathscr{P})$,

Lattice points \rightarrow Ehrhart polynomials

A vast generalization of the volume is the Ehrhart polynomial. To each polytope $\mathscr{P} \subseteq \mathbb{R}^{n}$ associate the function

$$
t \mapsto \#\left(t \mathscr{P} \cap \mathbb{Z}^{n}\right)
$$

This happens to be a polynomial that we denote $\operatorname{ehr}(\mathscr{P}, t)$. If $d:=\operatorname{dim} \mathscr{P}$ and

$$
\operatorname{ehr}(\mathscr{P}, t)=a_{d} t^{d}+a_{d-1} t^{d-1}+\cdots+a_{1} t+a_{0}
$$

then

- $a_{d}=\operatorname{vol}(\mathscr{P})$,
- $a_{d-1}=\frac{1}{2} \operatorname{vol}(\partial \mathscr{P})$,

Lattice points \rightarrow Ehrhart polynomials

A vast generalization of the volume is the Ehrhart polynomial. To each polytope $\mathscr{P} \subseteq \mathbb{R}^{n}$ associate the function

$$
t \mapsto \#\left(t \mathscr{P} \cap \mathbb{Z}^{n}\right)
$$

This happens to be a polynomial that we denote $\operatorname{ehr}(\mathscr{P}, t)$. If $d:=\operatorname{dim} \mathscr{P}$ and

$$
\operatorname{ehr}(\mathscr{P}, t)=a_{d} t^{d}+a_{d-1} t^{d-1}+\cdots+a_{1} t+a_{0}
$$

then

- $a_{d}=\operatorname{vol}(\mathscr{P})$,
- $a_{d-1}=\frac{1}{2} \operatorname{vol}(\partial \mathscr{P})$,
- $a_{0}=1$.

Lattice points \rightarrow Ehrhart polynomials

A vast generalization of the volume is the Ehrhart polynomial. To each polytope $\mathscr{P} \subseteq \mathbb{R}^{n}$ associate the function

$$
t \mapsto \#\left(t \mathscr{P} \cap \mathbb{Z}^{n}\right)
$$

This happens to be a polynomial that we denote $\operatorname{ehr}(\mathscr{P}, t)$. If $d:=\operatorname{dim} \mathscr{P}$ and

$$
\operatorname{ehr}(\mathscr{P}, t)=a_{d} t^{d}+a_{d-1} t^{d-1}+\cdots+a_{1} t+a_{0}
$$

then

- $a_{d}=\operatorname{vol}(\mathscr{P})$,
- $a_{d-1}=\frac{1}{2} \operatorname{vol}(\partial \mathscr{P})$,
- $a_{0}=1$.
- a_{1}, \ldots, a_{d-2} can be negative in general. ©

h^{*}-polynomials

If we write the Ehrhart polynomial of a polytope \mathscr{P} of dimension d in the basis $\binom{t+d}{d},\binom{t+d-1}{d}, \ldots,\binom{t}{d}$, namely

h^{*}-polynomials

If we write the Ehrhart polynomial of a polytope \mathscr{P} of dimension d in the basis $\binom{t+d}{d},\binom{t+d-1}{d}, \ldots,\binom{t}{d}$, namely

$$
\operatorname{ehr}(\mathscr{P}, t)=h_{0}\binom{t+d}{d}+h_{1}\binom{t+d-1}{d}+\cdots+h_{d}\binom{t}{d}
$$

Stanley showed in 1993 that all the coefficients h_{i} are nonnegative integers

h^{*}-polynomials

If we write the Ehrhart polynomial of a polytope \mathscr{P} of dimension d in the basis $\binom{t+d}{d},\binom{t+d-1}{d}, \ldots,\binom{t}{d}$, namely

$$
\operatorname{ehr}(\mathscr{P}, t)=h_{0}\binom{t+d}{d}+h_{1}\binom{t+d-1}{d}+\cdots+h_{d}\binom{t}{d}
$$

Stanley showed in 1993 that all the coefficients h_{i} are nonnegative integers

$$
h^{*}(\mathscr{P}, x)=h_{0}+h_{1} x+\cdots+h_{d} x^{d} .
$$

h^{*}-polynomials

If we write the Ehrhart polynomial of a polytope \mathscr{P} of dimension d in the basis $\binom{t+d}{d},\binom{t+d-1}{d}, \ldots,\binom{t}{d}$, namely

$$
\operatorname{ehr}(\mathscr{P}, t)=h_{0}\binom{t+d}{d}+h_{1}\binom{t+d-1}{d}+\cdots+h_{d}\binom{t}{d}
$$

Stanley showed in 1993 that all the coefficients h_{i} are nonnegative integers

$$
h^{*}(\mathscr{P}, x)=h_{0}+h_{1} x+\cdots+h_{d} x^{d} .
$$

Remark (Major problems)

h^{*}-polynomials

If we write the Ehrhart polynomial of a polytope \mathscr{P} of dimension d in the basis $\binom{t+d}{d},\binom{t+d-1}{d}, \ldots,\binom{t}{d}$, namely

$$
\operatorname{ehr}(\mathscr{P}, t)=h_{0}\binom{t+d}{d}+h_{1}\binom{t+d-1}{d}+\cdots+h_{d}\binom{t}{d}
$$

Stanley showed in 1993 that all the coefficients h_{i} are nonnegative integers

$$
h^{*}(\mathscr{P}, x)=h_{0}+h_{1} x+\cdots+h_{d} x^{d} .
$$

Remark (Major problems)

- Find conditions that h^{*}-polynomials of lattice polytopes must satisfy (inequalities, for example).

h^{*}-polynomials

If we write the Ehrhart polynomial of a polytope \mathscr{P} of dimension d in the basis $\binom{t+d}{d},\binom{t+d-1}{d}, \ldots,\binom{t}{d}$, namely

$$
\operatorname{ehr}(\mathscr{P}, t)=h_{0}\binom{t+d}{d}+h_{1}\binom{t+d-1}{d}+\cdots+h_{d}\binom{t}{d}
$$

Stanley showed in 1993 that all the coefficients h_{i} are nonnegative integers

$$
h^{*}(\mathscr{P}, x)=h_{0}+h_{1} x+\cdots+h_{d} x^{d} .
$$

Remark (Major problems)

- Find conditions that h^{*}-polynomials of lattice polytopes must satisfy (inequalities, for example).
- Find combinatorial interpretations of the coefficients of the h^{*}-polynomial, at least for particular families of polytopes.

What about the hypersimplex?

Let $W(\ell, n, m+1)$ denote the number of permutations $\sigma \in \mathfrak{S}_{n}$ that have exactly $m+1$ cycles and "weight" ℓ (using some definition of weight).

What about the hypersimplex?

Let $W(\ell, n, m+1)$ denote the number of permutations $\sigma \in \mathfrak{S}_{n}$ that have exactly $m+1$ cycles and "weight" ℓ (using some definition of weight).

Theorem (F. '21)
Consider the hypersimplex $\Delta_{k, n}$. The coefficient of degree m of its Ehrhart polynomial is given by

What about the hypersimplex?

Let $W(\ell, n, m+1)$ denote the number of permutations $\sigma \in \mathfrak{S}_{n}$ that have exactly $m+1$ cycles and "weight" ℓ (using some definition of weight).

Theorem (F. '21)
Consider the hypersimplex $\Delta_{k, n}$. The coefficient of degree m of its Ehrhart polynomial is given by

$$
\left[t^{m}\right] \operatorname{ehr}\left(\Delta_{k, n}, t\right)=\frac{1}{(n-1)!} \sum_{\ell=0}^{k-1} W(\ell, n, m+1) A(n-1, k-\ell-1)
$$

which in particular is positive.

Ehrhart in another basis

Regarding the h^{*}-polynomial we have the following combinatorial interpretation.

Ehrhart in another basis

Regarding the h^{*}-polynomial we have the following combinatorial interpretation.

Theorem (Early '17-Kim '20)
Consider the hypersimplex $\Delta_{k, n}$. The coefficient of degree m of its h^{*}-polynomial is given by

Ehrhart in another basis

Regarding the h^{*}-polynomial we have the following combinatorial interpretation.

Theorem (Early '17-Kim '20)
Consider the hypersimplex $\Delta_{k, n}$. The coefficient of degree m of its h^{*}-polynomial is given by

$$
\left[x^{m}\right] h^{*}\left(\Delta_{k, n}, x\right)=\#\left\{\begin{array}{c}
\text { decorated ordered set partitions } \\
\text { of type }(k, n) \text { and winding number } m
\end{array}\right\}
$$

What is a slice of a prism?

What is a slice of a prism?

Definition

Let $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{Z}_{>0}^{n}$. The rectangular prism $\mathscr{R}_{\mathbf{c}}$ is defined as the polytope

What is a slice of a prism?

Definition
Let $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{Z}_{>0}^{n}$. The rectangular prism $\mathscr{R}_{\mathbf{c}}$ is defined as the polytope

$$
\mathscr{R}_{\mathbf{c}}=\left\{x \in \mathbb{R}^{n}: 0 \leq x_{i} \leq c_{i} \text { for each } i \in[n]\right\} .
$$

For each positive integer k, the k-th slice $\mathscr{R}_{k, \mathbf{c}}$ is defined as:

What is a slice of a prism?

Definition

Let $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{Z}_{>0}^{n}$. The rectangular prism $\mathscr{R}_{\mathbf{c}}$ is defined as the polytope

$$
\mathscr{R}_{\mathbf{c}}=\left\{x \in \mathbb{R}^{n}: 0 \leq x_{i} \leq c_{i} \text { for each } i \in[n]\right\} .
$$

For each positive integer k, the k-th slice $\mathscr{R}_{k, \mathrm{c}}$ is defined as:

$$
\mathscr{R}_{k, \mathbf{c}}=\left\{x \in \mathscr{R}_{\mathbf{c}}: \sum_{i=1}^{n} x_{i}=k\right\} .
$$

Example (The basic example)
Consider $\mathbf{c}=(1, \ldots, 1) \in \mathbb{Z}_{>0}^{n}$. The k-th slice of $\mathscr{R}_{\mathbf{c}}$ is precisely the hypersimplex $\Delta_{k, n}$.

Example

If you consider the 3 -dimensional rectangular prism of sides 6,3 and 4 and you intersect it with the hyperplane $x+y+z=7$ you get the polytope on the right.

Fat slices

The preceding type of slice is what we informally call a "thin slice". Consider two nonnegative integers $a<b$ and the polytope $\mathscr{R}_{a, b, \mathbf{c}}^{\prime}$ defined by

Fat slices

The preceding type of slice is what we informally call a "thin slice". Consider two nonnegative integers $a<b$ and the polytope $\mathscr{R}_{a, b, \mathbf{c}}^{\prime}$ defined by

$$
\mathscr{R}_{a, b, \mathbf{c}}^{\prime}:=\left\{x \in \mathscr{R}_{\mathbf{c}}: a \leq \sum_{i=1}^{n} x_{i} \leq b\right\} .
$$

We say that this is a "fat slice" of the prism $\mathscr{R}_{\mathbf{c}}$.

Example

Figure: $\mathscr{R}^{\prime}{ }_{3,5,(4,3,2)}$

Fat Slices

A fat slice can be easily converted into a thin slice while preserving the Ehrhart polynomial.

Fat Slices

A fat slice can be easily converted into a thin slice while preserving the Ehrhart polynomial.

Proposition
Let $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{Z}_{>0}^{n}$ and $0 \leq a<b$. Then, the fat slice $\mathscr{R}_{a, b, \mathbf{c}}^{\prime}$ has the same Ehrhart polynomial as the thin slice $\mathscr{R}_{k, \mathbf{c}^{\prime}}$ where $k=b$ and $\mathbf{c}^{\prime}=(\mathbf{c}, b-a) \in \mathbb{Z}_{>0}^{n+1}$.

Basic properties of these polytopes

Basic properties of these polytopes

Remark

Basic properties of these polytopes

Remark

- Slices of prisms are alcoved polytopes.

Basic properties of these polytopes

Remark

- Slices of prisms are alcoved polytopes.
- The edges of a slice of a prism are all parallel to some vector of the form $e_{i}-e_{j}$. Hence, they are all generalized permutohedra or base polymatroids.

Basic properties of these polytopes

Remark

- Slices of prisms are alcoved polytopes.
- The edges of a slice of a prism are all parallel to some vector of the form $e_{i}-e_{j}$. Hence, they are all generalized permutohedra or base polymatroids.
- They are all polypositroids.

Basic properties of these polytopes

Remark

- Slices of prisms are alcoved polytopes.
- The edges of a slice of a prism are all parallel to some vector of the form $e_{i}-e_{j}$. Hence, they are all generalized permutohedra or base polymatroids.
- They are all polypositroids.

Conjecture (F., Jochemko, Schröter '21)
All positroids are Ehrhart positive.

Algebras of Veronese type

Algebras of Veronese type

Definition

Let $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{Z}_{>0}^{n}$ and $k>0$. The algebra of Veronese type $\mathscr{V}(\mathbf{c}, k)$ is defined as the the graded algebra over a field \mathbb{F} generated by all the monomials $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ such that $\alpha_{1}+\cdots+\alpha_{n}=k$ and $\alpha_{i} \leq c_{i}$ for all i.

Algebras of Veronese type

Definition

Let $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{Z}_{>0}^{n}$ and $k>0$. The algebra of Veronese type $\mathscr{V}(\mathbf{c}, k)$ is defined as the the graded algebra over a field \mathbb{F} generated by all the monomials $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ such that $\alpha_{1}+\cdots+\alpha_{n}=k$ and $\alpha_{i} \leq c_{i}$ for all i.

Theorem (Hibi and De Negri '97)
There is an isomorphism between $\mathscr{V}(\mathbf{c}, k)$ and the Ehrhart ring of $\mathscr{R}_{k, \mathbf{c}}$.
A consequence of the above result is that the Hilbert function of $\mathscr{V}(\mathbf{c}, k)$ coincides with $\operatorname{ehr}\left(\mathscr{R}_{k, \mathbf{c}}, t\right)$ and moreover, the numerator of the Hilbert series is $h^{*}\left(\mathscr{R}_{k, \mathbf{c}}, x\right)$.

Weighted Permutations and Compatibility

Weighted Permutations and Compatibility

Definition

A weighted permutation is a pair (σ, w) where $\sigma \in \mathfrak{S}_{n}$ and w assigns weight to the cycles of σ. The total weight of (σ, w) is the sum of the weights $w(\mathfrak{c})$ of all cycles \mathfrak{c} of σ.

Example: $(136)^{7}(25)^{0}(4)^{2}$.

Weighted Permutations and Compatibility

Definition

A weighted permutation is a pair (σ, w) where $\sigma \in \mathfrak{S}_{n}$ and w assigns weight to the cycles of σ. The total weight of (σ, w) is the sum of the weights $w(\mathfrak{c})$ of all cycles \mathfrak{c} of σ.

Example: $(136)^{7}(25)^{0}(4)^{2}$.

Definition

Let $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{Z}_{>0}^{n}$. A weighted permutation (σ, w) is said to be c-compatible if for each cycle \mathfrak{c} of σ, we have

Weighted Permutations and Compatibility

Definition

A weighted permutation is a pair (σ, w) where $\sigma \in \mathfrak{S}_{n}$ and w assigns weight to the cycles of σ. The total weight of (σ, w) is the sum of the weights $w(\mathfrak{c})$ of all cycles \mathfrak{c} of σ.

Example: $(136)^{7}(25)^{0}(4)^{2}$.

Definition

Let $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{Z}_{>0}^{n}$. A weighted permutation (σ, w) is said to be c-compatible if for each cycle \mathfrak{c} of σ, we have

Weighted Permutations and Compatibility

Definition

A weighted permutation is a pair (σ, w) where $\sigma \in \mathfrak{S}_{n}$ and w assigns weight to the cycles of σ. The total weight of (σ, w) is the sum of the weights $w(\mathfrak{c})$ of all cycles \mathfrak{c} of σ.

Example: $(136)^{7}(25)^{0}(4)^{2}$.

Definition

Let $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{Z}_{>0}^{n}$. A weighted permutation (σ, w) is said to be c-compatible if for each cycle \mathfrak{c} of σ, we have

$$
w(\mathfrak{c})<\sum_{i \in \mathfrak{c}} c_{i}
$$

Example

Let $\mathbf{c}=(2,4,6,8), \sigma=(13)^{6}(24)^{11}$.
Then (σ, w) is \mathbf{c}-compatible because

Example

Let $\mathbf{c}=(2,4,6,8), \sigma=(13)^{6}(24)^{11}$.
Then (σ, w) is \mathbf{c}-compatible because

$$
w((13))=6<\sum_{i \in(13)} c_{i}=2+6=8
$$

and

Example

Let $\mathbf{c}=(2,4,6,8), \sigma=(13)^{6}(24)^{11}$.
Then (σ, w) is \mathbf{c}-compatible because

$$
w\left(\left(\begin{array}{ll}
1 & 3)
\end{array}\right)=6<\sum_{i \in\left(\begin{array}{ll}
13) \\
& c_{i}
\end{array}=2+6=8\right.}\right.
$$

and

$$
w((24))=11<\sum_{i \in(24)} c_{i}=4+8=12 .
$$

Also, the total weight is $w(\sigma)=6+11=17$

Ehrhart Polynomial for Slices of Prisms

Ehrhart Polynomial for Slices of Prisms

Definition

We define $W(\ell, n, m+1, \mathbf{c})$ to be the number of compatible weighted permutations (σ, w) where $\sigma \in \mathfrak{S}_{n}$ has $m+1$ cycles and $w(\sigma)=\ell$.

Ehrhart Polynomial for Slices of Prisms

Definition

We define $W(\ell, n, m+1, \mathbf{c})$ to be the number of \mathbf{c}-compatible weighted permutations (σ, w) where $\sigma \in \mathfrak{S}_{n}$ has $m+1$ cycles and $w(\sigma)=\ell$.

Theorem (F. and McGinnis '22)
The coefficient of degree m of the Ehrhart polynomial for the prism slice $\mathscr{R}_{k, \mathrm{c}}$ is given by

Ehrhart Polynomial for Slices of Prisms

Definition

We define $W(\ell, n, m+1, \mathbf{c})$ to be the number of \mathbf{c}-compatible weighted permutations (σ, w) where $\sigma \in \mathfrak{S}_{n}$ has $m+1$ cycles and $w(\sigma)=\ell$.

Theorem (F. and McGinnis '22)
The coefficient of degree m of the Ehrhart polynomial for the prism slice $\mathscr{R}_{k, \mathrm{c}}$ is given by

$$
\left[t^{m}\right] \operatorname{ehr}\left(\mathscr{R}_{k, \mathbf{c}}, t\right)=\frac{1}{(n-1)!} \sum_{\ell=0}^{k-1} W(\ell, n, m+1, \mathbf{c}) A(m, k-\ell-1)
$$

which in particular are positive.

Flag Eulerian Numbers

Flag Eulerian Numbers

Definition

Let $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{Z}_{>0}^{n}$. A c-colored permutation on $[n]$ is a pair (σ, \mathbf{s}) where $\sigma \in \mathfrak{S}_{n}$ and \mathbf{s} is a function $\mathbf{s}:[n] \rightarrow \mathbb{Z}_{\geq 0}$ such that $s_{i}:=\mathbf{s}(i) \leq c_{i}-1$ for each i. The set of all such \mathbf{c}-colored permutations is denoted by $\mathfrak{S}_{n}^{(c)}$

Flag Eulerian Numbers

Definition

Let $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{Z}_{>0}^{n}$. A c-colored permutation on $[n]$ is a pair (σ, \mathbf{s}) where $\sigma \in \mathfrak{S}_{n}$ and \mathbf{s} is a function $\mathbf{s}:[n] \rightarrow \mathbb{Z}_{\geq 0}$ such that $s_{i}:=\mathbf{s}(i) \leq c_{i}-1$ for each i. The set of all such \mathbf{c}-colored permutations is denoted by $\mathfrak{S}_{n}^{(\mathbf{c})}$

Definition
The set of descents of a c-colored permutation (σ, \mathbf{c}) is given by

Flag Eulerian Numbers

Definition

Let $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{Z}_{>0}^{n}$. A c-colored permutation on $[n]$ is a pair (σ, \mathbf{s}) where $\sigma \in \mathfrak{S}_{n}$ and \mathbf{s} is a function $\mathbf{s}:[n] \rightarrow \mathbb{Z}_{\geq 0}$ such that $s_{i}:=\mathbf{s}(i) \leq c_{i}-1$ for each i. The set of all such \mathbf{c}-colored permutations is denoted by $\mathfrak{S}_{n}^{(c)}$

Definition
The set of descents of a c-colored permutation (σ, \mathbf{c}) is given by

$$
\operatorname{Des}(\sigma, \mathbf{s}):=\left\{i \in[n-1]: s_{i}>s_{i+1} \text { or } s_{i}=s_{i+1} \text { and } \sigma_{i}>\sigma_{i+1}\right\} .
$$

The flag descent number of a c-colored permutation $(\sigma, \mathbf{s}) \in \mathfrak{S}_{n}^{(\mathbf{c})}$ is defined by

Flag Eulerian Numbers

Definition

Let $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{Z}_{>0}^{n}$. A c-colored permutation on $[n]$ is a pair (σ, \mathbf{s}) where $\sigma \in \mathfrak{S}_{n}$ and \mathbf{s} is a function $\mathbf{s}:[n] \rightarrow \mathbb{Z}_{\geq 0}$ such that $s_{i}:=\mathbf{s}(i) \leq c_{i}-1$ for each i. The set of all such \mathbf{c}-colored permutations is denoted by $\mathfrak{S}_{n}^{(\mathbf{c})}$

Definition
The set of descents of a c-colored permutation (σ, \mathbf{c}) is given by

$$
\operatorname{Des}(\sigma, \mathbf{s}):=\left\{i \in[n-1]: s_{i}>s_{i+1} \text { or } s_{i}=s_{i+1} \text { and } \sigma_{i}>\sigma_{i+1}\right\} .
$$

The flag descent number of a c-colored permutation $(\sigma, \mathbf{s}) \in \mathfrak{S}_{n}^{(\mathbf{c})}$ is defined by

$$
\operatorname{fdes}(\sigma, \mathbf{s}):=s_{n}+\sum_{i \in \operatorname{Des}(\sigma, \mathbf{s})} c_{i+1} .
$$

Flag Eulerian Numbers

Flag Eulerian Numbers

Definition
Let $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$. We define the flag Eulerian number $A_{n, k}^{(\mathbf{c})}$ by

Flag Eulerian Numbers

Definition
Let $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$. We define the flag Eulerian number $A_{n, k}^{(\mathbf{c})}$ by

$$
A_{n, k}^{(\mathbf{c})}:=\#\left\{(\sigma, \mathbf{s}) \in \mathfrak{S}_{n}^{(\mathbf{c})}: \operatorname{fdes}(\sigma, \mathbf{s})=k-1\right\}
$$

Flag Eulerian Numbers

Definition

Let $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$. We define the flag Eulerian number $A_{n, k}^{(\mathbf{c})}$ by

$$
A_{n, k}^{(\mathbf{c})}:=\#\left\{(\sigma, \mathbf{s}) \in \mathfrak{S}_{n}^{(\mathbf{c})}: \operatorname{fdes}(\sigma, \mathbf{s})=k-1\right\}
$$

Theorem
The volume of the fat slice $\mathscr{R}_{k-1, k, \mathbf{c}}^{\prime}$ is given by

Flag Eulerian Numbers

Definition

Let $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$. We define the flag Eulerian number $A_{n, k}^{(\mathbf{c})}$ by

$$
A_{n, k}^{(\mathbf{c})}:=\#\left\{(\sigma, \mathbf{s}) \in \mathfrak{S}_{n}^{(\mathbf{c})}: \operatorname{fdes}(\sigma, \mathbf{s})=k-1\right\}
$$

Theorem
The volume of the fat slice $\mathscr{R}_{k-1, k, \mathbf{c}}^{\prime}$ is given by

$$
\operatorname{vol}\left(\mathscr{R}_{k-1, k, \mathbf{c}}^{\prime}\right)=\frac{1}{n!} A_{n, k}^{(\mathbf{c})}(n, k-1)
$$

Flag Eulerian Numbers

Definition

Let $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$. We define the flag Eulerian number $A_{n, k}^{(\mathbf{c})}$ by

$$
A_{n, k}^{(\mathbf{c})}:=\#\left\{(\sigma, \mathbf{s}) \in \mathfrak{S}_{n}^{(\mathbf{c})}: \operatorname{fdes}(\sigma, \mathbf{s})=k-1\right\}
$$

Theorem
The volume of the fat slice $\mathscr{R}_{k-1, k, \mathbf{c}}^{\prime}$ is given by

$$
\operatorname{vol}\left(\mathscr{R}_{k-1, k, \mathbf{c}}^{\prime}\right)=\frac{1}{n!} A_{n, k}^{(\mathbf{c})}(n, k-1)
$$

Remark

The case that $\mathbf{c}=(r, \ldots, r)$, reduces to a result by Han and Josuat-Vergès (2016), and when $r=1$ we recover Laplace's result on hypersimplices.

Ordered Set Partitions

Ordered Set Partitions

Definition

A decorated ordered set partition of type (k, n) consists of a cyclically ordered partition ξ of $[n]$ and a function $w: P(\xi) \rightarrow \mathbb{Z}_{\geq 0}$ such that

Ordered Set Partitions

Definition

A decorated ordered set partition of type (k, n) consists of a cyclically ordered partition ξ of $[n]$ and a function $w: P(\xi) \rightarrow \mathbb{Z}_{\geq 0}$ such that

$$
\sum_{\mathfrak{p} \in P(\xi)} w(\mathfrak{p})=k
$$

For a vector $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{Z}_{>0}^{n}$, we say that a decorated ordered set partition ξ is \mathbf{c}-compatible if

Ordered Set Partitions

Definition

A decorated ordered set partition of type (k, n) consists of a cyclically ordered partition ξ of $[n]$ and a function $w: P(\xi) \rightarrow \mathbb{Z}_{\geq 0}$ such that

$$
\sum_{\mathfrak{p} \in P(\xi)} w(\mathfrak{p})=k
$$

For a vector $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{Z}_{>0}^{n}$, we say that a decorated ordered set partition ξ is \mathbf{c}-compatible if

$$
w(\mathfrak{p})<\sum_{i \in \mathfrak{p}} c_{i}
$$

for all $\mathfrak{p} \in P(\xi)$.

Example

Let ξ be the following cyclically ordered partition of [8]

Example

Let ξ be the following cyclically ordered partition of [8]

$$
(\{1,3,6\},\{2,5\},\{4,7,8\})
$$

Let w be given by

Example

Let ξ be the following cyclically ordered partition of [8]

$$
(\{1,3,6\},\{2,5\},\{4,7,8\})
$$

Let w be given by

$$
w(\{1,3,6\})=1, \quad w(\{2,5\})=2, \quad w(\{4,7,8\})=4
$$

Then ξ and w make up a decorated ordered set partition of type $(7,8)$. It is (2, 1, 4, 5, 2, 3, 1, 1)-compatible for instance because

Example

Let ξ be the following cyclically ordered partition of [8]

$$
(\{1,3,6\},\{2,5\},\{4,7,8\})
$$

Let w be given by

$$
w(\{1,3,6\})=1, \quad w(\{2,5\})=2, \quad w(\{4,7,8\})=4
$$

Then ξ and w make up a decorated ordered set partition of type $(7,8)$. It is (2, 1, 4, 5, 2, 3, 1, 1)-compatible for instance because

$$
w(\{1,3,6\})=1<2+4+3=9, \quad w(\{2,5\})=2<1+2=3 .
$$

Example

Let ξ be the following cyclically ordered partition of [8]

$$
(\{1,3,6\},\{2,5\},\{4,7,8\})
$$

Let w be given by

$$
w(\{1,3,6\})=1, \quad w(\{2,5\})=2, \quad w(\{4,7,8\})=4
$$

Then ξ and w make up a decorated ordered set partition of type $(7,8)$. It is (2, 1, 4, 5, 2, 3, 1, 1)-compatible for instance because

$$
\begin{gathered}
w(\{1,3,6\})=1<2+4+3=9, \quad w(\{2,5\})=2<1+2=3 . \\
w(\{4,7,8\})=4<5+1+1=7 .
\end{gathered}
$$

Winding Number

Let ξ and w again be given by

Winding Number

Let ξ and w again be given by

$$
(\{1,3,6\},\{2,5\},\{4,7,8\})
$$

and

Winding Number

Let ξ and w again be given by

$$
(\{1,3,6\},\{2,5\},\{4,7,8\})
$$

and

$$
w(\{1,3,6\})=1, \quad w(\{2,5\})=2, \quad w(\{4,7,8\})=4
$$

This decorated ordered set partition can be visualized as follows.

The h^{*}-coefficients

The h^{*}-coefficients

Definition

The winding number of a decorated ordered set partition of type (k, n) is the integer m such that

The h^{*}-coefficients

Definition

The winding number of a decorated ordered set partition of type (k, n) is the integer m such that

$$
m k=\lambda_{1}+\cdots+\lambda_{n}
$$

where λ_{i} is the clockwise distance from the set containing i to the set containing $i+1$.

The h^{*}-coefficients

Definition

The winding number of a decorated ordered set partition of type (k, n) is the integer m such that

$$
m k=\lambda_{1}+\cdots+\lambda_{n}
$$

where λ_{i} is the clockwise distance from the set containing i to the set containing $i+1$.

Theorem (F. and McGinnis '22)
The coefficient of degree m of the h^{*}-polynomial for $\mathscr{R}_{k, \mathbf{c}}$ is given by

The h^{*}-coefficients

Definition

The winding number of a decorated ordered set partition of type (k, n) is the integer m such that

$$
m k=\lambda_{1}+\cdots+\lambda_{n}
$$

where λ_{i} is the clockwise distance from the set containing i to the set containing $i+1$.

Theorem (F. and McGinnis '22)
The coefficient of degree m of the h^{*}-polynomial for $\mathscr{R}_{k, \mathbf{c}}$ is given by

$$
\left[x^{m}\right] h^{*}\left(\mathscr{R}_{k, \mathbf{c}}, x\right)=\#\left\{\begin{array}{c}
\text { c-compatible decorated ordered set partitions } \\
\text { of type }(k, n) \text { and winding number } m
\end{array}\right\}
$$

Two conjectures regarding roots

Two conjectures regarding roots

Conjecture (F. and McGinnis '22)
All the complex roots of the polynomial

Two conjectures regarding roots

Conjecture (F. and McGinnis '22)
All the complex roots of the polynomial

$$
p_{n, m, \mathbf{c}}(x)=\sum_{\ell=0}^{\infty} W(\ell, n, m+1, \mathbf{c}) x^{\ell}
$$

lie on the unit circle $|z|=1$.

Two conjectures regarding roots

Conjecture (F. and McGinnis '22)
All the complex roots of the polynomial

$$
p_{n, m, \mathbf{c}}(x)=\sum_{\ell=0}^{\infty} W(\ell, n, m+1, \mathbf{c}) x^{\ell}
$$

lie on the unit circle $|z|=1$.
Conjecture (F. and McGinnis '22)
The h^{*}-polynomial of a slice of a prism is always real-rooted. Moreover, if $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$ and $\mathbf{c}^{\prime}=\left(c_{1}, \ldots, c_{n-1}, c_{n}-1,1\right)$, then

Two conjectures regarding roots

Conjecture (F. and McGinnis '22)
All the complex roots of the polynomial

$$
p_{n, m, \mathbf{c}}(x)=\sum_{\ell=0}^{\infty} W(\ell, n, m+1, \mathbf{c}) x^{\ell}
$$

lie on the unit circle $|z|=1$.
Conjecture (F. and McGinnis '22)
The h^{*}-polynomial of a slice of a prism is always real-rooted. Moreover, if $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$ and $\mathbf{c}^{\prime}=\left(c_{1}, \ldots, c_{n-1}, c_{n}-1,1\right)$, then

$$
h^{*}\left(\mathscr{R}_{k, \mathbf{c}}, x\right) \preceq h^{*}\left(\mathscr{R}_{k, \mathbf{c}^{\prime}}, x\right)
$$

namely, these two polynomials interlace.

THANK YOU!

