Lattice points in slices of rectangular prisms

Daniel McGinnis Iowa State University

Algebra and Geometry Seminar

Daniel McGinnis

Lattice points in slices of prisms

April 19, 2022

• = •

This talk is based on joint work with Luis Ferroni "Lattice points in slices of prisms" (arXiv:2202.11808)

April 19, 2022

(日)

The hypersimplex $\Delta_{k,n}$ is defined by

イロト 不得 トイヨト イヨト

3

The hypersimplex $\Delta_{k,n}$ is defined by

$$\Delta_{k,n} = \left\{ x \in [0,1]^n : \sum_{i=1}^n x_i = k \right\}.$$

イロト 不得 トイヨト イヨト

3

The hypersimplex $\Delta_{k,n}$ is defined by

$$\Delta_{k,n} = \left\{ x \in [0,1]^n : \sum_{i=1}^n x_i = k \right\}.$$

It is of fundamental importance in

-			<u> </u>	
l) an	1el	MC	(ain	nic
Dan	101	1010	0	1113

э

The hypersimplex $\Delta_{k,n}$ is defined by

$$\Delta_{k,n} = \left\{ x \in [0,1]^n : \sum_{i=1}^n x_i = k \right\}.$$

It is of fundamental importance in

• Matroid theory \rightarrow uniform matroids.

イロト 不得 トイヨト イヨト

3

The hypersimplex $\Delta_{k,n}$ is defined by

$$\Delta_{k,n} = \left\{ x \in [0,1]^n : \sum_{i=1}^n x_i = k \right\}.$$

It is of fundamental importance in

- Matroid theory \rightarrow uniform matroids.
- Graph theory \rightarrow the Johnshon graph.

э

The hypersimplex $\Delta_{k,n}$ is defined by

$$\Delta_{k,n} = \left\{ x \in [0,1]^n : \sum_{i=1}^n x_i = k \right\}.$$

It is of fundamental importance in

- Matroid theory \rightarrow uniform matroids.
- Graph theory \rightarrow the Johnshon graph.
- Grassmannians \rightarrow specifically TNN Grassmannian.

The hypersimplex $\Delta_{k,n}$ is defined by

$$\Delta_{k,n} = \left\{ x \in [0,1]^n : \sum_{i=1}^n x_i = k \right\}.$$

It is of fundamental importance in

- Matroid theory \rightarrow uniform matroids.
- Graph theory \rightarrow the Johnshon graph.
- Grassmannians \rightarrow specifically TNN Grassmannian.
- The theory of alcoved polytopes \rightarrow triangulations.

The hypersimplex $\Delta_{k,n}$ is defined by

$$\Delta_{k,n} = \left\{ x \in [0,1]^n : \sum_{i=1}^n x_i = k \right\}.$$

It is of fundamental importance in

- Matroid theory \rightarrow uniform matroids.
- Graph theory \rightarrow the Johnshon graph.
- Grassmannians \rightarrow specifically TNN Grassmannian.
- The theory of alcoved polytopes \rightarrow triangulations.
- Much more! (tropical geometry, coding theory, statistics of permutations, etc.)

イロト イヨト イヨト ・

		• 🗆	・ ・ 御 ト ・ 臣 ト ・ 臣 ト … 臣	うくつ
Daniel McGinnis	Lattice points in slices of prisms		April 19, 2022	4 / 26

Remark

The vertices of the hypersimplex $\Delta_{k,n}$ are all the 0/1-vectors in \mathbb{R}^n that have exactly k ones.

Remark

The vertices of the hypersimplex $\Delta_{k,n}$ are all the 0/1-vectors in \mathbb{R}^n that have exactly k ones.

In 1977 Stanley gave a combinatorial proof of the following fact

Image: A matrix and a matrix

Remark

The vertices of the hypersimplex $\Delta_{k,n}$ are all the 0/1-vectors in \mathbb{R}^n that have exactly k ones.

In 1977 Stanley gave a combinatorial proof of the following fact

Theorem

The volume of the hypersimplex $\Delta_{k,n}$ is

		• 🗗	► < =	- N - 1	(≣)	-2	
Daniel McGinnis	Lattice points in slices of prisms		April	19, 2	2022		4 / 26

Remark

The vertices of the hypersimplex $\Delta_{k,n}$ are all the 0/1-vectors in \mathbb{R}^n that have exactly k ones.

In 1977 Stanley gave a combinatorial proof of the following fact

Theorem

The volume of the hypersimplex $\Delta_{k,n}$ is

$$\operatorname{vol}(\Delta_{k,n}) = \frac{1}{(n-1)!}A(n-1,k-1),$$

where $A(n-1, k-1) = \{ \sigma \in \mathfrak{S}_{n-1} \text{ having } k-1 \text{ descents} \}.$

Remark

The vertices of the hypersimplex $\Delta_{k,n}$ are all the 0/1-vectors in \mathbb{R}^n that have exactly k ones.

In 1977 Stanley gave a combinatorial proof of the following fact

Theorem

The volume of the hypersimplex $\Delta_{k,n}$ is

$$\operatorname{vol}(\Delta_{k,n}) = \frac{1}{(n-1)!}A(n-1,k-1),$$

where $A(n-1, k-1) = \{ \sigma \in \mathfrak{S}_{n-1} \text{ having } k-1 \text{ descents} \}.$

It follows from his proof that the hypersimplex admits a certain unimodular triangulation.

Daniel McGinnis

イロト 不得 トイラト イラト 一日

A vast generalization of the volume is the Ehrhart polynomial. To each polytope $\mathscr{P} \subseteq \mathbb{R}^n$ associate the function

- 20

A vast generalization of the volume is the Ehrhart polynomial. To each polytope $\mathscr{P} \subseteq \mathbb{R}^n$ associate the function

$$t \mapsto \#(t\mathscr{P} \cap \mathbb{Z}^n).$$

This happens to be a polynomial that we denote $\mathrm{ehr}(\mathscr{P},t).$ If $d:=\dim \mathscr{P}$ and

イロト 不得 トイヨト イヨト 二日

A vast generalization of the volume is the Ehrhart polynomial. To each polytope $\mathscr{P} \subseteq \mathbb{R}^n$ associate the function

$$t \mapsto \#(t\mathscr{P} \cap \mathbb{Z}^n).$$

This happens to be a polynomial that we denote $ehr(\mathscr{P}, t)$. If $d := \dim \mathscr{P}$ and

$$ehr(\mathscr{P}, t) = a_d t^d + a_{d-1} t^{d-1} + \dots + a_1 t + a_0,$$

then

イロト 不得 トイヨト イヨト 二日

A vast generalization of the volume is the Ehrhart polynomial. To each polytope $\mathscr{P} \subseteq \mathbb{R}^n$ associate the function

$$t \mapsto \#(t\mathscr{P} \cap \mathbb{Z}^n).$$

This happens to be a polynomial that we denote $ehr(\mathscr{P}, t)$. If $d := \dim \mathscr{P}$ and

$$ehr(\mathscr{P}, t) = a_d t^d + a_{d-1} t^{d-1} + \dots + a_1 t + a_0,$$

then

• $a_d = \operatorname{vol}(\mathscr{P})$,

イロト イポト イヨト イヨト 二日

A vast generalization of the volume is the Ehrhart polynomial. To each polytope $\mathscr{P} \subseteq \mathbb{R}^n$ associate the function

$$t \mapsto \#(t\mathscr{P} \cap \mathbb{Z}^n).$$

This happens to be a polynomial that we denote $ehr(\mathscr{P}, t)$. If $d := \dim \mathscr{P}$ and

$$ehr(\mathscr{P}, t) = a_d t^d + a_{d-1} t^{d-1} + \dots + a_1 t + a_0,$$

then

•
$$a_d = \operatorname{vol}(\mathscr{P})$$
,
• $a_{d-1} = \frac{1}{2} \operatorname{vol}(\partial \mathscr{P})$,

イロト 不得 トイヨト イヨト 二日

A vast generalization of the volume is the Ehrhart polynomial. To each polytope $\mathscr{P} \subseteq \mathbb{R}^n$ associate the function

$$t \mapsto \#(t\mathscr{P} \cap \mathbb{Z}^n).$$

This happens to be a polynomial that we denote $ehr(\mathscr{P}, t)$. If $d := \dim \mathscr{P}$ and

$$\operatorname{ehr}(\mathscr{P}, t) = a_d t^d + a_{d-1} t^{d-1} + \dots + a_1 t + a_0,$$

then

イロト イポト イヨト イヨト 二日

A vast generalization of the volume is the Ehrhart polynomial. To each polytope $\mathscr{P} \subseteq \mathbb{R}^n$ associate the function

$$t \mapsto \#(t\mathscr{P} \cap \mathbb{Z}^n).$$

This happens to be a polynomial that we denote $ehr(\mathscr{P}, t)$. If $d := \dim \mathscr{P}$ and

$$ehr(\mathscr{P}, t) = a_d t^d + a_{d-1} t^{d-1} + \dots + a_1 t + a_0,$$

then

- $a_d = \operatorname{vol}(\mathscr{P}),$
- $a_{d-1} = \frac{1}{2} \operatorname{vol}(\partial \mathscr{P}),$
- $a_0 = 1$.
- a_1, \ldots, a_{d-2} can be negative in general. \odot

If we write the Ehrhart polynomial of a polytope \mathcal{P} of dimension d in the basis $\binom{t+d}{d}$, $\binom{t+d-1}{d}$, ..., $\binom{t}{d}$, namely

If we write the Ehrhart polynomial of a polytope \mathscr{P} of dimension d in the basis $\binom{t+d}{d}, \binom{t+d-1}{d}, \ldots, \binom{t}{d}$, namely

$$\operatorname{ehr}(\mathscr{P},t) = h_0 \binom{t+d}{d} + h_1 \binom{t+d-1}{d} + \dots + h_d \binom{t}{d},$$

Stanley showed in 1993 that all the coefficients h_i are nonnegative integers

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If we write the Ehrhart polynomial of a polytope \mathscr{P} of dimension d in the basis $\binom{t+d}{d}, \binom{t+d-1}{d}, \ldots, \binom{t}{d}$, namely

$$\operatorname{ehr}(\mathscr{P},t) = h_0 \binom{t+d}{d} + h_1 \binom{t+d-1}{d} + \dots + h_d \binom{t}{d},$$

Stanley showed in 1993 that all the coefficients h_i are nonnegative integers

$$h^*(\mathscr{P}, x) = h_0 + h_1 x + \dots + h_d x^d.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If we write the Ehrhart polynomial of a polytope \mathscr{P} of dimension d in the basis $\binom{t+d}{d}, \binom{t+d-1}{d}, \ldots, \binom{t}{d}$, namely

$$\operatorname{ehr}(\mathscr{P},t) = h_0 \binom{t+d}{d} + h_1 \binom{t+d-1}{d} + \dots + h_d \binom{t}{d},$$

Stanley showed in 1993 that all the coefficients h_i are nonnegative integers

$$h^*(\mathscr{P}, x) = h_0 + h_1 x + \dots + h_d x^d.$$

Remark (Major problems)

If we write the Ehrhart polynomial of a polytope \mathscr{P} of dimension d in the basis $\binom{t+d}{d}, \binom{t+d-1}{d}, \ldots, \binom{t}{d}$, namely

$$\operatorname{ehr}(\mathscr{P},t) = h_0 \binom{t+d}{d} + h_1 \binom{t+d-1}{d} + \dots + h_d \binom{t}{d},$$

Stanley showed in 1993 that all the coefficients h_i are nonnegative integers

$$h^*(\mathscr{P}, x) = h_0 + h_1 x + \dots + h_d x^d.$$

Remark (Major problems)

• Find conditions that *h**-polynomials of lattice polytopes must satisfy (inequalities, for example).

If we write the Ehrhart polynomial of a polytope \mathscr{P} of dimension d in the basis $\binom{t+d}{d}, \binom{t+d-1}{d}, \ldots, \binom{t}{d}$, namely

$$\operatorname{ehr}(\mathscr{P},t) = h_0 \binom{t+d}{d} + h_1 \binom{t+d-1}{d} + \dots + h_d \binom{t}{d},$$

Stanley showed in 1993 that all the coefficients h_i are nonnegative integers

$$h^*(\mathscr{P}, x) = h_0 + h_1 x + \dots + h_d x^d.$$

Remark (Major problems)

- Find conditions that *h**-polynomials of lattice polytopes must satisfy (inequalities, for example).
- Find combinatorial interpretations of the coefficients of the h^* -polynomial, at least for particular families of polytopes.

Let $W(\ell, n, m + 1)$ denote the number of permutations $\sigma \in \mathfrak{S}_n$ that have exactly m + 1 cycles and "weight" ℓ (using some definition of weight).

イロト 不得 トイヨト イヨト

Let $W(\ell, n, m+1)$ denote the number of permutations $\sigma \in \mathfrak{S}_n$ that have exactly m+1 cycles and "weight" ℓ (using some definition of weight).

Theorem (F. '21)

Consider the hypersimplex $\Delta_{k,n}$. The coefficient of degree m of its Ehrhart polynomial is given by

Let $W(\ell, n, m+1)$ denote the number of permutations $\sigma \in \mathfrak{S}_n$ that have exactly m+1 cycles and "weight" ℓ (using some definition of weight).

Theorem (F. '21)

Consider the hypersimplex $\Delta_{k,n}$. The coefficient of degree m of its Ehrhart polynomial is given by

$$[t^m] \operatorname{ehr}(\Delta_{k,n}, t) = \frac{1}{(n-1)!} \sum_{\ell=0}^{k-1} W(\ell, n, m+1) A(n-1, k-\ell-1),$$

which in particular is positive.

7 / 26

Regarding the $h^{\ast}\mbox{-}{\rm polynomial}$ we have the following combinatorial interpretation.

イロト 不得 トイヨト イヨト

э

Regarding the $h^{\ast}\mbox{-}{\rm polynomial}$ we have the following combinatorial interpretation.

Theorem (Early '17 - Kim '20)

Consider the hypersimplex $\Delta_{k,n}$. The coefficient of degree m of its h^* -polynomial is given by

Regarding the $h^{\ast}\mbox{-}{\rm polynomial}$ we have the following combinatorial interpretation.

Theorem (Early '17 - Kim '20)

Consider the hypersimplex $\Delta_{k,n}$. The coefficient of degree m of its h^* -polynomial is given by

 $[x^{m}]h^{*}(\Delta_{k,n}, x) = \# \left\{ \begin{matrix} \text{decorated ordered set partitions} \\ \text{of type } (k, n) \text{ and winding number } m \end{matrix} \right\},$

What is a slice of a prism?

			÷.	*) Q (*
Daniel McGinnis	Lattice points in slices of prisms	April 19, 2022		9 / 26
What is a slice of a prism?

Definition

Let $\mathbf{c} = (c_1, \dots, c_n) \in \mathbb{Z}_{>0}^n$. The **rectangular prism** $\mathscr{R}_{\mathbf{c}}$ is defined as the polytope

			目を	Э.	$\mathcal{O} \land \mathcal{O}$
Daniel McGinnis	Lattice points in slices of prisms	April 19, 2	2022		9 / 26

What is a slice of a prism?

.

Definition

Let $\mathbf{c} = (c_1, \dots, c_n) \in \mathbb{Z}_{>0}^n$. The **rectangular prism** $\mathscr{R}_{\mathbf{c}}$ is defined as the polytope

$$\mathscr{R}_{\mathbf{c}} = \{ x \in \mathbb{R}^n : 0 \le x_i \le c_i \text{ for each } i \in [n] \}.$$

For each positive integer k, the k-th slice $\mathscr{R}_{k,c}$ is defined as:

			< ≣ >	-2	4) Q (4
Daniel McGinnis	Lattice points in slices of prisms	April 19,	2022		9 / 26

What is a slice of a prism?

Definition

Let $\mathbf{c} = (c_1, \dots, c_n) \in \mathbb{Z}_{>0}^n$. The **rectangular prism** $\mathscr{R}_{\mathbf{c}}$ is defined as the polytope

$$\mathscr{R}_{\mathbf{c}} = \{ x \in \mathbb{R}^n : 0 \le x_i \le c_i \text{ for each } i \in [n] \}.$$

For each positive integer k, the k-th slice $\mathscr{R}_{k,c}$ is defined as:

$$\mathscr{R}_{k,\mathbf{c}} = \left\{ x \in \mathscr{R}_{\mathbf{c}} : \sum_{i=1}^{n} x_i = k \right\}.$$

Example (The basic example)

.

Consider $\mathbf{c} = (1, ..., 1) \in \mathbb{Z}_{>0}^n$. The *k*-th slice of $\mathscr{R}_{\mathbf{c}}$ is precisely the hypersimplex $\Delta_{k,n}$.

э

9/26

イロト 不得下 イヨト イヨト

If you consider the 3-dimensional rectangular prism of sides 6, 3 and 4 and you intersect it with the hyperplane x + y + z = 7 you get the polytope on the right.

Daniel McGinnis

Lattice points in slices of prisms

April 19, 2022

The preceding type of slice is what we informally call a "thin slice". Consider two nonnegative integers a < b and the polytope $\mathscr{R}'_{a,b,\mathbf{c}}$ defined by

イロト 不得 トイヨト イヨト

э

The preceding type of slice is what we informally call a "thin slice". Consider two nonnegative integers a < b and the polytope $\mathscr{R}'_{a,b,\mathbf{c}}$ defined by

$$\mathscr{R}'_{a,b,\mathbf{c}} := \left\{ x \in \mathscr{R}_{\mathbf{c}} : a \le \sum_{i=1}^{n} x_i \le b \right\}.$$

We say that this is a "fat slice" of the prism $\mathscr{R}_{\mathbf{c}}$.

イロト 不得 トイヨト イヨト 二日

Figure: $\mathscr{R}'_{3,5,(4,3,2)}$

D			\sim	
l)an	Iel	NIC	(- in	nic
Dan	101	IVIC.	9	

Lattice points in slices of prisms

April 19, 2022

イロト イヨト イヨト イヨト

3

A fat slice can be easily converted into a thin slice while preserving the Ehrhart polynomial.

イロト イヨト イヨト イヨト

A fat slice can be easily converted into a thin slice while preserving the Ehrhart polynomial.

Proposition

Let $\mathbf{c} = (c_1, \ldots, c_n) \in \mathbb{Z}_{>0}^n$ and $0 \le a < b$. Then, the fat slice $\mathscr{R}'_{a,b,\mathbf{c}}$ has the same Ehrhart polynomial as the thin slice $\mathscr{R}_{k,\mathbf{c}'}$ where k = b and $\mathbf{c}' = (\mathbf{c}, b - a) \in \mathbb{Z}_{>0}^{n+1}$.

		• 🗆	・ ・ 聞 ・ ・ 言 ・ ・ 言 ・ ・	1	900
Daniel McGinnis	Lattice points in slices of prisms		April 19, 2022		14 / 26

Remark

Daniel McGinnis	Lattice points in slices of prisms	April 19, 2022	14 / 26
		< □ > < 個 > < 差 > < 差 > < 差 > 差	୬୯୯

Remark

• Slices of prisms are *alcoved polytopes*.

Remark

- Slices of prisms are *alcoved polytopes*.
- The edges of a slice of a prism are all parallel to some vector of the form $e_i e_j$. Hence, they are all generalized permutohedra or base polymatroids.

Image: A matrix and a matrix

Remark

- Slices of prisms are *alcoved polytopes*.
- The edges of a slice of a prism are all parallel to some vector of the form $e_i e_j$. Hence, they are all generalized permutohedra or base polymatroids.
- They are all *polypositroids*.

Image: A matrix and a matrix

Remark

- Slices of prisms are *alcoved polytopes*.
- The edges of a slice of a prism are all parallel to some vector of the form $e_i e_j$. Hence, they are all generalized permutohedra or base polymatroids.
- They are all *polypositroids*.

Conjecture (F., Jochemko, Schröter '21)

All positroids are Ehrhart positive.

Algebras of Veronese type

		∎►	< 🗗)	 < ≣ > 	<≣≯	1	うくで
Daniel McGinnis	Lattice points in slices of prisms			April 19,	, 2022		15 / 26

Algebras of Veronese type

Definition

Let $\mathbf{c} = (c_1, \ldots, c_n) \in \mathbb{Z}_{>0}^n$ and k > 0. The algebra of Veronese type $\mathscr{V}(\mathbf{c}, k)$ is defined as the the graded algebra over a field \mathbb{F} generated by all the monomials $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ such that $\alpha_1 + \cdots + \alpha_n = k$ and $\alpha_i \leq c_i$ for all *i*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Algebras of Veronese type

Definition

Let $\mathbf{c} = (c_1, \ldots, c_n) \in \mathbb{Z}_{>0}^n$ and k > 0. The algebra of Veronese type $\mathscr{V}(\mathbf{c}, k)$ is defined as the the graded algebra over a field \mathbb{F} generated by all the monomials $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ such that $\alpha_1 + \cdots + \alpha_n = k$ and $\alpha_i \leq c_i$ for all i.

Theorem (Hibi and De Negri '97)

There is an isomorphism between $\mathscr{V}(\mathbf{c},k)$ and the Ehrhart ring of $\mathscr{R}_{k,\mathbf{c}}$.

A consequence of the above result is that the Hilbert function of $\mathscr{V}(\mathbf{c}, k)$ coincides with $\operatorname{ehr}(\mathscr{R}_{k,\mathbf{c}}, t)$ and moreover, the numerator of the Hilbert series is $h^*(\mathscr{R}_{k,\mathbf{c}}, x)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

		${}^{\bullet} \square {}^{\bullet}$	◆聞 ▶ ◆ 臣 ▶ ◆ 臣 ▶	₹.	୬୯୯
Daniel McGinnis	Lattice points in slices of prisms		April 19, 2022		16 / 26

Definition

A weighted permutation is a pair (σ, w) where $\sigma \in \mathfrak{S}_n$ and w assigns weight to the cycles of σ . The total weight of (σ, w) is the sum of the weights $w(\mathfrak{c})$ of all cycles \mathfrak{c} of σ .

Example: $(1\ 3\ 6)^7 (2\ 5)^0 (4)^2$.

イロト 不得 トイヨト イヨト

Definition

A weighted permutation is a pair (σ, w) where $\sigma \in \mathfrak{S}_n$ and w assigns weight to the cycles of σ . The **total weight** of (σ, w) is the sum of the weights $w(\mathfrak{c})$ of all cycles \mathfrak{c} of σ .

Example: $(1\ 3\ 6)^7 (2\ 5)^0 (4)^2$.

Definition

Let $\mathbf{c} = (c_1, \ldots, c_n) \in \mathbb{Z}_{>0}^n$. A weighted permutation (σ, w) is said to be **c-compatible** if for each cycle \mathfrak{c} of σ , we have

(日)

Definition

A weighted permutation is a pair (σ, w) where $\sigma \in \mathfrak{S}_n$ and w assigns weight to the cycles of σ . The **total weight** of (σ, w) is the sum of the weights $w(\mathfrak{c})$ of all cycles \mathfrak{c} of σ .

Example: $(1\ 3\ 6)^7 (2\ 5)^0 (4)^2$.

Definition

Let $\mathbf{c} = (c_1, \ldots, c_n) \in \mathbb{Z}_{>0}^n$. A weighted permutation (σ, w) is said to be **c-compatible** if for each cycle \mathfrak{c} of σ , we have

(日)

Definition

A weighted permutation is a pair (σ, w) where $\sigma \in \mathfrak{S}_n$ and w assigns weight to the cycles of σ . The **total weight** of (σ, w) is the sum of the weights $w(\mathfrak{c})$ of all cycles \mathfrak{c} of σ .

Example: $(1\ 3\ 6)^7 (2\ 5)^0 (4)^2$.

Definition

Let $\mathbf{c} = (c_1, \ldots, c_n) \in \mathbb{Z}_{>0}^n$. A weighted permutation (σ, w) is said to be **c-compatible** if for each cycle \mathfrak{c} of σ , we have

$$w(\mathfrak{c}) < \sum_{i \in \mathfrak{c}} c_i.$$

16/26

(日)

Let $\mathbf{c} = (2, 4, 6, 8)$, $\sigma = (1 \ 3)^6 (2 \ 4)^{11}$. Then (σ, w) is c-compatible because

イロン イヨン イヨン

3

Let $\mathbf{c} = (2, 4, 6, 8)$, $\sigma = (1 \ 3)^6 (2 \ 4)^{11}$. Then (σ, w) is c-compatible because

$$w((1\ 3)) = 6 < \sum_{i \in (1\ 3)} c_i = 2 + 6 = 8$$

and

Daniel McGinnis	Lattice points in slices of prisms	April 19, 2022	17 / 26

Let $\mathbf{c} = (2, 4, 6, 8)$, $\sigma = (1 \ 3)^6 (2 \ 4)^{11}$. Then (σ, w) is c-compatible because

$$w((1\ 3)) = 6 < \sum_{i \in (1\ 3)} c_i = 2 + 6 = 8$$

and

$$w((2\ 4)) = 11 < \sum_{i \in (2\ 4)} c_i = 4 + 8 = 12.$$

Also, the total weight is $w(\sigma)=6+11=17$

・ロト ・ 聞 ト ・ 国 ト ・ 国 ト …

- 20

		< □ >	< ₽ < ₹ >	<≣≯	- 2	୬୯୯
Daniel McGinnis	Lattice points in slices of prisms		April 19	, 2022		18 / 26

Definition

We define $W(\ell, n, m+1, \mathbf{c})$ to be the number of c-compatible weighted permutations (σ, w) where $\sigma \in \mathfrak{S}_n$ has m+1 cycles and $w(\sigma) = \ell$.

Definition

We define $W(\ell, n, m+1, \mathbf{c})$ to be the number of **c**-compatible weighted permutations (σ, w) where $\sigma \in \mathfrak{S}_n$ has m+1 cycles and $w(\sigma) = \ell$.

Theorem (F. and McGinnis '22)

The coefficient of degree m of the Ehrhart polynomial for the prism slice $\mathscr{R}_{k,\mathbf{c}}$ is given by

Definition

We define $W(\ell, n, m+1, \mathbf{c})$ to be the number of c-compatible weighted permutations (σ, w) where $\sigma \in \mathfrak{S}_n$ has m+1 cycles and $w(\sigma) = \ell$.

Theorem (F. and McGinnis '22)

The coefficient of degree m of the Ehrhart polynomial for the prism slice $\mathscr{R}_{k,\mathbf{c}}$ is given by

$$[t^m] \operatorname{ehr}(\mathscr{R}_{k,\mathbf{c}},t) = \frac{1}{(n-1)!} \sum_{\ell=0}^{k-1} W(\ell,n,m+1,\mathbf{c}) A(m,k-\ell-1)$$

which in particular are positive.

18 / 26

Flag Eulerian Numbers

	•	< ₽	 < ≣ 	< ≣ ►	- 2	うくつ
Daniel McGinnis	Lattice points in slices of prisms		April 19	2022		19 / 26

Flag Eulerian Numbers

Definition

Let $\mathbf{c} = (c_1, \ldots, c_n) \in \mathbb{Z}_{>0}^n$. A c-colored permutation on [n] is a pair (σ, \mathbf{s}) where $\sigma \in \mathfrak{S}_n$ and \mathbf{s} is a function $\mathbf{s} : [n] \to \mathbb{Z}_{\geq 0}$ such that $s_i := \mathbf{s}(i) \leq c_i - 1$ for each i. The set of all such c-colored permutations is denoted by $\mathfrak{S}_n^{(\mathbf{c})}$

Definition

Let $\mathbf{c} = (c_1, \ldots, c_n) \in \mathbb{Z}_{>0}^n$. A c-colored permutation on [n] is a pair (σ, \mathbf{s}) where $\sigma \in \mathfrak{S}_n$ and \mathbf{s} is a function $\mathbf{s} : [n] \to \mathbb{Z}_{\geq 0}$ such that $s_i := \mathbf{s}(i) \leq c_i - 1$ for each i. The set of all such c-colored permutations is denoted by $\mathfrak{S}_n^{(\mathbf{c})}$

Definition

The set of **descents** of a c-colored permutation (σ, c) is given by

Definition

Let $\mathbf{c} = (c_1, \ldots, c_n) \in \mathbb{Z}_{>0}^n$. A c-colored permutation on [n] is a pair (σ, \mathbf{s}) where $\sigma \in \mathfrak{S}_n$ and \mathbf{s} is a function $\mathbf{s} : [n] \to \mathbb{Z}_{\geq 0}$ such that $s_i := \mathbf{s}(i) \leq c_i - 1$ for each i. The set of all such c-colored permutations is denoted by $\mathfrak{S}_n^{(\mathbf{c})}$

Definition

The set of **descents** of a **c**-colored permutation (σ, \mathbf{c}) is given by

$$Des(\sigma, \mathbf{s}) := \{ i \in [n-1] : s_i > s_{i+1} \text{ or } s_i = s_{i+1} \text{ and } \sigma_i > \sigma_{i+1} \}.$$

The flag descent number of a c-colored permutation $(\sigma, \mathbf{s}) \in \mathfrak{S}_n^{(\mathbf{c})}$ is defined by

Definition

Let $\mathbf{c} = (c_1, \ldots, c_n) \in \mathbb{Z}_{>0}^n$. A c-colored permutation on [n] is a pair (σ, \mathbf{s}) where $\sigma \in \mathfrak{S}_n$ and \mathbf{s} is a function $\mathbf{s} : [n] \to \mathbb{Z}_{\geq 0}$ such that $s_i := \mathbf{s}(i) \leq c_i - 1$ for each i. The set of all such c-colored permutations is denoted by $\mathfrak{S}_n^{(\mathbf{c})}$

Definition

The set of **descents** of a **c**-colored permutation (σ, \mathbf{c}) is given by

$$Des(\sigma, \mathbf{s}) := \{ i \in [n-1] : s_i > s_{i+1} \text{ or } s_i = s_{i+1} \text{ and } \sigma_i > \sigma_{i+1} \}.$$

The flag descent number of a c-colored permutation $(\sigma, \mathbf{s}) \in \mathfrak{S}_n^{(\mathbf{c})}$ is defined by

$$fdes(\sigma, \mathbf{s}) := s_n + \sum_{i \in Des(\sigma, \mathbf{s})} c_{i+1}.$$

Flag Eulerian Numbers

		▲□▼▼ ▲ 厘 ▼	★夏≯	1	うくい
Daniel McGinnis	Lattice points in slices of prisms	April 19,	2022		20 / 26
Definition

Let $\mathbf{c} = (c_1, \dots, c_n)$. We define the flag Eulerian number $A_{n,k}^{(\mathbf{c})}$ by

		- ・ 御 ト ・ 言 ト ・ 言 ト	2	୬୯୯
Daniel McGinnis	Lattice points in slices of prisms	April 19, 2022		20 / 26

Definition

Let $\mathbf{c} = (c_1, \dots, c_n)$. We define the flag Eulerian number $A_{n,k}^{(\mathbf{c})}$ by

$$A_{n,k}^{(\mathbf{c})} := \#\left\{ (\sigma, \mathbf{s}) \in \mathfrak{S}_n^{(\mathbf{c})} : \text{fdes}(\sigma, \mathbf{s}) = k - 1 \right\}.$$

		▲□▶★舂▶★≧▶★≧▶ = Ξ	୬୯୯
Daniel McGinnis	Lattice points in slices of prisms	April 19, 2022	20 / 26

Definition

Let $\mathbf{c} = (c_1, \dots, c_n)$. We define the flag Eulerian number $A_{n,k}^{(\mathbf{c})}$ by

$$A_{n,k}^{(\mathbf{c})} := \#\left\{ (\sigma, \mathbf{s}) \in \mathfrak{S}_n^{(\mathbf{c})} : \text{fdes}(\sigma, \mathbf{s}) = k - 1 \right\}$$

Theorem

The volume of the fat slice $\mathscr{R}'_{k-1,k,\mathbf{c}}$ is given by

			= 1)4(1
aniel McGinnis	Lattice points in slices of prisms	April 19, 2022	20 / 26

Definition

Let $\mathbf{c} = (c_1, \ldots, c_n)$. We define the flag Eulerian number $A_{n,k}^{(\mathbf{c})}$ by

$$A_{n,k}^{(\mathbf{c})} := \#\left\{ (\sigma, \mathbf{s}) \in \mathfrak{S}_n^{(\mathbf{c})} : \text{fdes}(\sigma, \mathbf{s}) = k - 1 \right\}$$

Theorem

The volume of the fat slice $\mathscr{R}'_{k-1,k,\mathbf{c}}$ is given by

$$\operatorname{vol}(\mathscr{R}'_{k-1,k,\mathbf{c}}) = \frac{1}{n!} A_{n,k}^{(\mathbf{c})}(n,k-1)$$

		 .	
L)a	nie	COL	nnis
~~		 	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $\mathbf{c} = (c_1, \ldots, c_n)$. We define the flag Eulerian number $A_{n,k}^{(\mathbf{c})}$ by

$$A_{n,k}^{(\mathbf{c})} := \#\left\{ (\sigma, \mathbf{s}) \in \mathfrak{S}_n^{(\mathbf{c})} : \text{fdes}(\sigma, \mathbf{s}) = k - 1 \right\}.$$

Theorem

The volume of the fat slice $\mathscr{R}'_{k-1,k,\mathbf{c}}$ is given by

$$\operatorname{vol}(\mathscr{R}'_{k-1,k,\mathbf{c}}) = \frac{1}{n!} A_{n,k}^{(\mathbf{c})}(n,k-1)$$

Remark

The case that $\mathbf{c} = (r, \dots, r)$, reduces to a result by Han and Josuat-Vergès (2016), and when r = 1 we recover Laplace's result on hypersimplices.

Daniel McGinnis

Ordered Set Partitions

		• •	< 🗗 >	◆ 豊 ≯	◆夏♪	10	୬୯୯
Daniel McGinnis	Lattice points in slices of prisms			April 19	2022		21 / 26

Ordered Set Partitions

Definition

A decorated ordered set partition of type (k, n) consists of a cyclically ordered partition ξ of [n] and a function $w: P(\xi) \to \mathbb{Z}_{\geq 0}$ such that

		• 🗆	 < ≣ > 	∢≣≯	Ξ.	9 Q (P
Daniel McGinnis	Lattice points in slices of prisms		April 19	, 2022		21 / 26

A decorated ordered set partition of type (k, n) consists of a cyclically ordered partition ξ of [n] and a function $w : P(\xi) \to \mathbb{Z}_{\geq 0}$ such that

$$\sum_{\mathfrak{p}\in P(\xi)} w(\mathfrak{p}) = k.$$

For a vector $\mathbf{c} = (c_1, \ldots, c_n) \in \mathbb{Z}_{>0}^n$, we say that a decorated ordered set partition ξ is \mathbf{c} -compatible if

< □ > < □ > < □ > < □ > < □ > < □ >

A decorated ordered set partition of type (k, n) consists of a cyclically ordered partition ξ of [n] and a function $w : P(\xi) \to \mathbb{Z}_{\geq 0}$ such that

$$\sum_{\mathfrak{p}\in P(\xi)} w(\mathfrak{p}) = k.$$

For a vector $\mathbf{c} = (c_1, \ldots, c_n) \in \mathbb{Z}_{>0}^n$, we say that a decorated ordered set partition ξ is **c**-compatible if

$$w(\mathfrak{p}) < \sum_{i \in \mathfrak{p}} c_i$$

for all $\mathfrak{p} \in P(\xi)$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Let ξ be the following cyclically ordered partition of [8]

	4		< ≣ >	- 2	4) Q (4
Daniel McGinnis	Lattice points in slices of prisms	April 19,	2022		22 / 26

Let ξ be the following cyclically ordered partition of [8]

```
(\{1,3,6\},\{2,5\},\{4,7,8\}).
```

Let w be given by

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $\boldsymbol{\xi}$ be the following cyclically ordered partition of [8]

```
(\{1,3,6\},\{2,5\},\{4,7,8\}).
```

Let w be given by

$$w(\{1,3,6\}) = 1, \ w(\{2,5\}) = 2, \ w(\{4,7,8\}) = 4.$$

Then ξ and w make up a decorated ordered set partition of type (7,8). It is (2,1,4,5,2,3,1,1)-compatible for instance because

22 / 26

イロト イポト イヨト イヨト 二日

Let $\boldsymbol{\xi}$ be the following cyclically ordered partition of [8]

```
(\{1,3,6\},\{2,5\},\{4,7,8\}).
```

Let w be given by

$$w(\{1,3,6\}) = 1, \ w(\{2,5\}) = 2, \ w(\{4,7,8\}) = 4.$$

Then ξ and w make up a decorated ordered set partition of type (7,8). It is (2,1,4,5,2,3,1,1)-compatible for instance because

$$w(\{1,3,6\}) = 1 < 2 + 4 + 3 = 9, \quad w(\{2,5\}) = 2 < 1 + 2 = 3.$$

イロト イポト イヨト イヨト 二日

Let $\boldsymbol{\xi}$ be the following cyclically ordered partition of [8]

```
(\{1,3,6\},\{2,5\},\{4,7,8\}).
```

Let w be given by

$$w(\{1,3,6\}) = 1, \ w(\{2,5\}) = 2, \ w(\{4,7,8\}) = 4.$$

Then ξ and w make up a decorated ordered set partition of type (7,8). It is (2,1,4,5,2,3,1,1)-compatible for instance because

$$w(\{1,3,6\}) = 1 < 2 + 4 + 3 = 9, \quad w(\{2,5\}) = 2 < 1 + 2 = 3.$$

$$w(\{4,7,8\}) = 4 < 5 + 1 + 1 = 7.$$

Winding Number

Let ξ and w again be given by

		${}^{\bullet} \square {}^{\bullet}$	<₽>	${\bf A} \equiv {\bf A}$	$\in \Xi \rightarrow$	 9 Q (P
Daniel McGinnis	Lattice points in slices of prisms			April 19	2022	23 / 26

Winding Number

Let ξ and w again be given by

```
(\{1,3,6\},\{2,5\},\{4,7,8\})
```

and

			~ .	
L)a	niel	Mc	(₃ 1n	nis

(日)

æ

Winding Number

Let ξ and w again be given by

$$(\{1,3,6\},\{2,5\},\{4,7,8\})$$

and

$$w(\{1,3,6\}) = 1, \ w(\{2,5\}) = 2, \ w(\{4,7,8\}) = 4.$$

This decorated ordered set partition can be visualized as follows.

< 47 ▶

I ∃ →

The h^* -coefficients

	4	▲圖▶▲콜▶▲콜▶ = 콜	900
Daniel McGinnis	Lattice points in slices of prisms	April 19, 2022	24 / 26

The h^* -coefficients

Definition

The winding number of a decorated ordered set partition of type $\left(k,n\right)$ is the integer m such that

Image: A matrix and a matrix

< ∃⇒

э

The winding number of a decorated ordered set partition of type $\left(k,n\right)$ is the integer m such that

$$mk = \lambda_1 + \dots + \lambda_n$$

where λ_i is the clockwise distance from the set containing i to the set containing i + 1.

24 / 26

The winding number of a decorated ordered set partition of type $\left(k,n\right)$ is the integer m such that

$$mk = \lambda_1 + \dots + \lambda_n$$

where λ_i is the clockwise distance from the set containing i to the set containing i + 1.

Theorem (F. and McGinnis '22)

The coefficient of degree m of the h^* -polynomial for $\mathscr{R}_{k,\mathbf{c}}$ is given by

< □ > < □ > < □ > < □ > < □ > < □ >

э

The winding number of a decorated ordered set partition of type $\left(k,n\right)$ is the integer m such that

$$mk = \lambda_1 + \dots + \lambda_n$$

where λ_i is the clockwise distance from the set containing i to the set containing i + 1.

Theorem (F. and McGinnis '22)

The coefficient of degree m of the h^* -polynomial for $\mathscr{R}_{k,\mathbf{c}}$ is given by

 $[x^{m}]h^{*}(\mathscr{R}_{k,\mathbf{c}},x) = \# \left\{ \begin{matrix} \mathbf{c}\text{-compatible decorated ordered set partitions} \\ \text{of type } (k,n) \text{ and winding number } m \end{matrix} \right\},$

	•	▲□ ▶ ▲ □ ▶	◆夏≯	1	うくつ
Daniel McGinnis	Lattice points in slices of prisms	April 19,	2022		25 / 26

Conjecture (F. and McGinnis '22) All the complex roots of the polynomial

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

э

Conjecture (F. and McGinnis '22) All the complex roots of the polynomial

$$p_{n,m,\mathbf{c}}(x) = \sum_{\ell=0}^{\infty} W(\ell, n, m+1, \mathbf{c}) x^{\ell}.$$

lie on the unit circle |z| = 1.

-												
D	а	n	1	ρ	Ν	л	C	(-	r	n	I	S
-	-			~				~				-

Image: A matrix and a matrix

э

Conjecture (F. and McGinnis '22) All the complex roots of the polynomial

$$p_{n,m,\mathbf{c}}(x) = \sum_{\ell=0}^{\infty} W(\ell, n, m+1, \mathbf{c}) x^{\ell}.$$

lie on the unit circle |z| = 1.

Conjecture (F. and McGinnis '22)

The h^* -polynomial of a slice of a prism is always real-rooted. Moreover, if $\mathbf{c} = (c_1, \ldots, c_n)$ and $\mathbf{c}' = (c_1, \ldots, c_{n-1}, c_n - 1, 1)$, then

Conjecture (F. and McGinnis '22) All the complex roots of the polynomial

$$p_{n,m,\mathbf{c}}(x) = \sum_{\ell=0}^{\infty} W(\ell, n, m+1, \mathbf{c}) x^{\ell}.$$

lie on the unit circle |z| = 1.

Conjecture (F. and McGinnis '22)

The h^* -polynomial of a slice of a prism is always real-rooted. Moreover, if $\mathbf{c} = (c_1, \ldots, c_n)$ and $\mathbf{c}' = (c_1, \ldots, c_{n-1}, c_n - 1, 1)$, then

$$h^*(\mathscr{R}_{k,\mathbf{c}},x) \preceq h^*(\mathscr{R}_{k,\mathbf{c}'},x)$$

namely, these two polynomials interlace.

THANK YOU!

					-	-			
	2	•		ν.			in	n	IC.
_	- CI I			v	I C	9			

Lattice points in slices of prisms

▲ □ ▶ ▲ @ ▶ ▲ E ▶ ▲ E ▶
April 19, 2022