Some 2 uantum Symmetries of Path Algebras

Amrei Oswald Joint with Ryan Rinser

Tuesday, November 10, 2020
Algebra and Geometry Seminar Iowa State University

Outline

- Background
- 2 vivers and path algebras
-Hopf algebras and their actions
- Parametrization of $U_{q}(l)$ actions on $\mathbb{k} 2$
- Bimodules in rep $\left(U_{q}(d)\right)$
-Equivalence w/ category of representations of certain quivers
- Taft algebras
- $U_{q}\left(\Delta_{2}\right)$

Background
Fix a fix a field dk. We assume ilk contains any necessary roots of unity.

Def A quiver $2=(2,2, s, t)$ consists of a finite set of vertices 2_{0}, a finite set of arrows 2_{1}, and mops $s, t: 2, \longrightarrow 2$ giving the source and target of each arrow resp

The path algebra $\mathbb{k} 2$ is the associative \mathbb{k}-algebra $w /$ basis consisting of all paths and multiplication of paths given by concatenation when possible (left to right). Ik2 contains paths of length zero at each vertex i, denoted e_{i} (these are idempotents)

$$
a_{1} e_{i} \otimes a_{2}=a_{1} \otimes e_{i} a_{2}=0 \text { unless } t\left(a_{1}\right)=i=s\left(a_{2}\right) \text { for } a_{1}, a_{2} \in 2_{1}, i \in 2_{0}
$$

A representation V of a quiver 2 is an assignment of a fin dim vector space V_{i} to each vertex $i \in \boldsymbol{2}_{\text {。 }}$ along with a linear map $V_{a}: V_{t 0} \longrightarrow V_{s 0}$ to each arrow $a \in \mathcal{Z}_{1}$. (The linear maps go in the opposite dir of the arrows so maps compos right to left and arrows multiply left to right)

Background
Def: A Hopf algebra H is a $l k$-vector space with
$\left.\begin{array}{l}\text {.a multiplication map } m: H \otimes H \rightarrow H \\ \text {-a unit map } U: l k \rightarrow H\end{array}\right\}$ algebra structure
$\left.\begin{array}{l}\text {-a comultiplication map } \Delta: H \longrightarrow H \otimes H \\ \text {-a count map } \varepsilon: H \rightarrow \mathbb{k}\end{array}\right\}$ coalgebra structure

- an antipode $S: H \longrightarrow H$
where ε and Δ are algebra homomorphisms (ie H is a bialgebra) and the following diagrams commute

associativity

coassociativity etc

Background
Def: Given a Hoof alegbre H and an algebra A, (heft Hoof) action of H on A consists of a left H -module structure on A so that
(a) $h \cdot(p q)=\sum_{i}\left(h_{1, i} \cdot p\right)\left(h_{2 i} ;-q\right) \quad \forall p, q \in A, \quad h \in H$ where $\Delta(h)=\sum_{i}^{i} h_{1 ;} \otimes h_{2, i}$
(b) $h \cdot 1_{A}=\varepsilon(h) 1_{A} \quad \forall h \in H$

We say A is a left H-module algebra ie. A is an algebra in the tensor category rep (H)
The category rep (H) is an example of a tensor category (abelian category $\omega /$ a tensor product, etc)
We can define the notion of an algebra and a bimodule in a tensor category C
eg. an algebra is an object $A \in C$ along $w /$ a multiplication mop $m \in \operatorname{Home}(A \otimes A, A)$ st certain diagrams commute

In a recent paper by Etingof, Rinser, and Walton ($E K W$) they develop the notion of tensor algebras $T_{s}(E)$ where S is an algebra in C and E is a bimodule in C

Background
Examples: (We omit the counit b/e checking the relevant conditions is straightforward.) Fix $q \in \mathbb{k}^{x} \backslash\{ \pm 1\}$. We will use the following Hop algebras.

1) The quantized enveloping algebra of the Lie algebra $b, U_{f}(b)$ is given by generators $\quad x, \quad g, g^{-1}$
with relations $\quad g g^{-1}=1=g^{-1} g, \quad g x=q \times g$
and comultication $\quad \Delta(g)=g \circ g, \quad \Delta(x)=10 x+x \theta g$
If q is a primitive $r^{\text {th }}$ root of unity and $n \in \mathbb{Z}^{+}$st r / n,
then the generalized Taft algebra is the Hop quotient $T(r, n)=U_{q}(b) /\left\langle g^{n}-1, x^{r}\right\rangle$
If $r=n$, we get the classical Taft algebra $T(n)$

Background
Examples: 2) The quantized enveloping algebra of the Lie algebra s_{2} is given by generators E, F, K, K^{-1}
with relations $\quad K K^{-1}=1=K^{-1} K \quad K E=q^{2} E K$

$$
[E, F]=\frac{K-K^{-1}}{q-q^{-1}} \quad K F=q^{-2} F K
$$

and comultiplication $\quad \Delta(E)=1 \otimes E+E \otimes K \quad \Delta(K)=K \otimes K$

$$
\Delta(F)=K^{-1} \otimes F+F \otimes 1
$$

If q is a primitive $n^{\text {th }}$ root of unity with $n>2$ and n odd, we have the small quantum group or Frobenius-Lusztig kernel

$$
v_{q}\left(\Delta l_{2}\right)=U_{q}\left(\Delta l_{2}\right) /\left\langle K^{n}-1, E_{1}^{n} F^{n}\right\rangle
$$

Note: We have isomorphisms of Hop algebras

$$
\left.\begin{array}{l}
\langle E, K\rangle \cong U_{p^{2}}(l) \text { where } K \leftrightarrow g, E \leftrightarrow x \\
\langle F, K\rangle \cong U_{q^{-2}}(l) \quad \text { where } K \leftrightarrow g, F \leftrightarrow g^{-1} x
\end{array}\right\} \text { analogues of Bored subalgebros }
$$

$v_{q}\left(\mu_{2}\right)$ has two subaligebras isomorphic to Taft algebras

Parametrization of Actions of $U_{q}(l)$ and $U_{q}\left(\Delta l_{2}\right)$ on $1 k 2$
Note, we assume all actions of Hoof algebras on path alcebross preserve the filtration by path length
$G=\langle g\rangle, \quad f_{\text {ix }} q \in \| \mathbb{k}^{*} \backslash\{ \pm 1\}$
Theorem: The following data determines a Hoof action of $U_{f}(l)$ on $1 k 2$ and all such actions have this form.
(i) A Hoof of $U_{q}(t)$ on $1 k 2$ 。 determined by

- A permutation action of G on 2 。
- A collection of scalars $\left(x_{i}\right)_{i \in 2,}$ so that $\gamma_{y_{i}}=q^{-1} \gamma_{i}$
where $x \cdot e_{i}=\gamma_{i} e_{i}-\gamma_{g_{i} i} e_{g_{i}} \quad \forall i \in Z_{0}$
(ii) A representation of G on $l k 2_{1}$ st $s(g \cdot a)=g \cdot s a$ and $t(g \cdot a)=t a \forall a \in 2$,
(iii) $\mathbf{A} \mathbb{k}$-linear endomorphism $\sigma: \mathbb{k} \boldsymbol{Z}_{0} \oplus \mathbb{k} \boldsymbol{Z}_{1} \longrightarrow \mathbb{k} \mathbb{Z}_{0} \oplus \mathbb{k} \mathcal{Z}_{1}$ so that
($\sigma 1$) $\sigma(1 k 20)=0$
$(\sigma 2) \sigma(a)=e_{s a} \sigma(a) e_{j}+2 \quad \forall a \in 2$,
($\sigma 3$) $\sigma(g \cdot a)=q^{-1} g \cdot \sigma(a) \quad \forall a \in 2_{1}$
where $x \cdot a=\gamma_{t a} a-\gamma_{g \cdot 32}(g \cdot a)+\sigma(a)$

Parametrization of Actions of $U_{q}(l)$ and $U_{q}\left(\Delta l_{2}\right)$ on $1 k 2$
Example:

XP is a linear combination of the above

G-action on vertices

G-orbit of a
G-orbit of $\sigma(a)$

Let $V=\mathbb{k} 2$. Then the arrow space $V_{j}^{i}:=e_{i} V_{j}$ is the subspace of V spanned by arrows w/ source i and target j.
We have the decomposition $V=\bigoplus_{i, j} V_{j}^{i}$ In the diagram above, the arrows represent arrow spaces.

Note, we have $\operatorname{lcm}(2,4)=4$ copies of each arrow space and $\operatorname{gcd}(2,4)=2$ isomorphism classes of arrow spaces

Parametrization of Actions of $U_{4}(l)$ and $U_{4}\left(\Delta l_{2}\right)$ on $1 k 2$
Corollary: If q is a primitive $r^{\text {th }}$ root of unity, then an action of $U_{q}(l)$ on $k k 2$ factors through $T(r, n) \Leftrightarrow$
(1) The action on $\mathbb{k} 2_{0}$ factors through $T(r, n)$
(2) $\forall a \in 2_{1}, \quad \gamma_{s a} g^{r} \cdot a-\gamma_{t 2} a=\sigma^{r}(a)$
(3) g^{n} acts as identity on all of $\mathbb{K} 2$

Parametrization of Actions of $U_{4}(t)$ and $U_{4}\left(\Delta l_{2}\right)$ on $1 k 2$
$G=\langle k\rangle$
Theorem: Assuming \#(G:i)>2 $\forall i \in 2_{0}$, the following data determines a filtered Hopf action of $U_{q}\left(\Delta l_{2}\right)$ on $\mathbb{K} 2$ and all such actions have this form.
(i) A Hoof action of $U_{Y}\left(\theta_{2}\right)$ on $1 k 2_{0}$
-A permutation action of G on 2 .
-2 collections of scalars $\left(\gamma_{i}^{\varepsilon}\right)_{\text {.c. }}$, and $\left(\gamma_{i}^{5}\right)_{\text {.ct. }}$.
as before $w /$ additional relation $\gamma_{i}^{E} \gamma_{i}^{E}=\frac{-q}{\left(1-q^{2}\right)^{2}} \quad \forall i \in \alpha_{0}$
(ii) A representation of G on $\mathbb{k} 2$, st $s(K \cdot a)=K \cdot s a$ and $t(K \cdot a)=K \cdot t_{a}$
(iii) A pair of linear endomorphisms σ^{E} and σ^{F} as before so that $\sigma^{\mathcal{F}} \sigma^{\varepsilon}=q^{2} \sigma^{\varepsilon} \sigma^{E}$

Bimodules in $\operatorname{rep}\left(U_{9}(L)\right)$

Let $S=\mathbb{k} 2$ 。 and $V=\mathbb{k} 2$, which is an S-bimodule st $\mathbb{k} 2 \cong T_{s}(v)$
With a graded $U_{q}(t)$-action, S is an algebra in $C:=$ rep $\left(U_{q}(l)\right)$ and V is an S-bimodule in C. Then, as in EKW, we call $T_{s}(v)$ a C-tensor algebra

Def: $T_{s}(V)$ is a minimal, faithful e-tensor algebra if
V is an indecomposoble S-bimodule in V and
no two-sided ideal of S in C acts by O on V.
These are the "building blocks" of e-tensor algebras.

Bimodules in rep $\left(U_{2}(\Omega)\right)$
To study minimal, faithful C-tensor algebras, it is sufficient to consider the case where S has two indecompossble summand S_{1} and S_{2}.

We examine $s_{1}-s_{2}$-bimodules in e.
For a positive integer m, let $S_{m}=\mathbb{k}^{m}$ be the vector space with coordinate-wise multiplication.

The set of standard basis vectors $\left\{e_{0}, e_{1}, \ldots, e_{m-1}\right\}$ gives a system of primitive orthogonal idempotents
Define a G-action on S_{m} by $g \cdot e_{i}=e_{i+1}(\bmod u)$
Identify S_{m} with the path algebra of a quiver w / m vertices and no arrows.

Bimodules in rep $\left(U_{2}(l)\right)$

Fix positive integers m and m : $A_{n} S_{m}$ - S_{m}-bimodve V in rep $\left(U_{g}(l)\right)$ is the path algebra of a quiver of the following form with a $U_{q}(t)$ action.

The action of g gives $l=\ell c m\left(m, m^{\prime}\right)$ isomorphic copies of each arrow space, and there are $d=\operatorname{ged}\left(m, m^{\prime}\right)$ isomorphism types of arrow spaces.

Each arrow space V_{j}^{i} is a representation of $\left\langle g^{l}\right\rangle \leq G$

$$
\Rightarrow V_{j}^{i}=\bigoplus_{\lambda \in k^{\prime}} V_{j}^{i}(\lambda) \quad \text { where } \quad V_{j}^{i}(\lambda)=\left\{v \in V_{j}^{i} \mid(\lambda 1-g)^{(} \cdot v=0 \text { for } M \gg 0\right\}
$$

The action of $U_{q}(l)$ gives a map σ w/ property $(\sigma 3) \sigma g=q^{-1} g \sigma$

$$
\Rightarrow \quad \sigma\left(V_{j}^{j}(\lambda)\right) \subseteq V_{j+1}^{i}\left(q^{\prime} \lambda\right)
$$

Let $B:=$ category of $S_{m}-S_{m}$-bimodules in $\operatorname{rep}\left(U_{q}(l)\right)$

Bimodules in $\operatorname{rep}\left(U_{9}(L)\right)$
Define a quiver $2\left(q^{2}, d\right) \quad w /$ vertex set $\mathbb{k}^{\times} \times \mathbb{Z} / d \mathbb{Z}$ and arrows $\left(q^{2} \lambda, j+1\right) \longrightarrow(\lambda, j) \quad$ (a-type) and a loop at each vertex $\left(\lambda_{i}\right)$ (b-type)
The connected components of $2\left(q^{i}, d\right)$ have the form
$q \neq$ Foot of unity:
let $p=\operatorname{lcm}\left(\operatorname{lq} q^{2}, d\right)$
$q=$ root of unity:

$\Gamma(q, d)=$ the quotient of $\| k 2\left(q^{l}, d\right)$ by all relations of the form ba $=q^{\text {a }}$ ab
$\mathcal{N}=$ category of fin dim reps of $\Gamma\left(q^{\prime}, d\right)$ st the maps associated to b-type loops ore nilpotent

Bimodules in $\operatorname{rep}\left(U_{p}(\mu)\right)$
Theorem: The categories B and \mathcal{N} are equivalent.
~proof: We construct mutually quasi-invecse functors.
$B \rightarrow N:$ Given $v \in B$, let $W_{\lambda, j}=V_{x i, j}^{0}(\lambda)$

$$
\begin{aligned}
& A_{\lambda, j}=\left.\sigma\right|_{W_{j},}: W_{\lambda_{j}} \rightarrow W_{q \alpha_{j, j}} \\
& B_{\lambda_{j,}}=\left(g^{l}-\lambda 1\right) \mid W_{M_{j}} W_{\lambda_{j}} \rightarrow W_{\lambda_{j},} \text { is nilpotent }
\end{aligned}
$$

$\underline{\mathcal{N} \rightarrow \mathcal{B}}: \quad$ Given $\left(W_{\lambda, j}, A_{\lambda_{j}}, B_{\lambda_{j}}\right) \in \mathcal{N}$
Let $\tilde{W}_{j}^{0}=\oplus \bigoplus_{\text {wand }} \quad$ and $\quad \tilde{W}=\bigoplus_{j=0}^{-1} \tilde{W}_{j}^{0}$
Let $H \leq \mathbb{K G}$ be the subalgebra generated by g^{ℓ}
Then $\mathbb{k G} \otimes_{H} \tilde{\mathbf{W}} \in \mathcal{B}$
given a bimodule structure $e_{0} \tilde{W}_{e_{j}}=\tilde{W}_{j}^{0}$
and actions $g^{2} \cdot \omega=\lambda \omega+B_{\lambda, j}(\omega)$ for $\omega \in W_{\lambda, j}$

$$
x \cdot\left(g^{t} \otimes \omega\right)=q^{-t}\left(\gamma_{j}^{\prime} g^{t} \otimes \omega-\gamma_{0} q^{-1} g^{t+1} \otimes \omega+g^{t+\varepsilon} \otimes A_{\lambda_{j}}(\omega)\right) \text { for } \omega \in W_{x_{j}}
$$

Taft Algebras
$q=$ primitive $r^{\text {th }}$ root of unity
$T=$ quiver $w /$ vertices ($5, i$)
where ξ is an $(n / l)^{\text {th }}$ root of unity and $i \in \mathbb{Z} / d \mathbb{Z}$
W/ a-type arrows and connected components of the form

as long as $m=r$ or $m^{\prime}=r$
relations $\begin{cases}a^{r}=0 & m \neq r, m^{\prime} \neq r \\ a^{k}=\text { constant } & m=r \text { or } m^{\prime}=r\end{cases}$
$\underline{U}_{q}\left(\Delta l_{2}\right)$
assume m, m '>2 and $q=$ primitive $n^{\text {th }}$ root of unity $w / n>2$ and n odd
Actions parametrized by data for the Borel subalgebras $U_{q^{2}}(l), U_{q^{-}}(l)$
\Rightarrow we have two collections of scalars $\left\{X_{i}^{E}\right\}$ and $\left\{\gamma_{i}^{F}\right\}$ and maps σ^{E} and σ^{F} so that $q^{2} \sigma^{E} \sigma^{F}=\sigma^{F} \sigma^{E}$
connected components of the quiver have the form: with relations $a b=q^{-2 l} b a \quad c b=q^{2 l} b c \quad q^{2} a c=c a$

example with $\operatorname{lcm}\left(\left|q^{2 \ell}\right|, d\right)=3$
actions that factor through $V_{q}\left(\mathrm{Sl}_{2}\right)$:
with relations $q^{2} a c=c a, \quad a^{d}=$ constant,

$$
c^{d}=\text { constant }
$$

Thank you! 2 vestions?

