Some Quantum Symmetries of Path Algebras Amrei Oswald Joint with Ryan Kinser Tuesday, November 10, 2020 Algebra and Geometry Seminar Iowa State University

Outline

Background

- 2 uivers and path algebras
- Hopf algebras and their actions

Parametrization of Uq(b) actions on Ik2
Bimodules in rep(Uq(b))

- Equivalence w/ category of representations of certain quivers
Taft algebras
Uq(dl2)

Fix a fix a field lk. We assume lk contains any necessary roots of unity.

Def: A <u>quiver</u> $2 = (2_0, 2_1, s, t)$ consists of a finite set of vertices 2_0 , a finite set of arrows 2_1 , and maps $s, t: 2_1 \longrightarrow 2_0$ giving the <u>source</u> and <u>target</u> of each arrow resp $3 \xrightarrow{\circ} 3 \xrightarrow{\circ} 5(a) \xrightarrow{\circ} t(a)$

The <u>path algebra</u> IK2 is the associative IK-algebra W/ basis consisting of all paths and multiplication of paths given by concatenation when possible (left to right). IK2 contains paths of length zero at each vertex i, denoted e; (these are idempotents)

Note, IK20 is a semisimple IK-algebra and IK2, is a IK20-bimodule \Rightarrow IK2 \cong T_{K2} (IK2,)

$$a_1e_1\otimes a_2 = a_1\otimes e_1a_2 = 0$$
 unless $t(a_1) = i = s(a_2)$ for $a_1, a_2 \in \mathcal{A}_1$, $i \in \mathcal{A}_1$

A <u>representation</u> V of a quiver 2 is an assignment of a findim vector space V; to each vertex $i \in 2_0$ along with a linear map $V_3: V_{13} \longrightarrow V_{33}$ to each arrow $a \in 2_1$. (The linear maps go in the opposite dir of the arrows so maps compose right to left and arrows multiply left to right)

where \mathcal{E} and Δ are algebra homomorphisms (ie H is a bialgebra) and the following diagrams commute

Def: Given a Hopf algebra H and an algebra A, a (left Hopf) action of H on A consists of
a left H-module structure on A so that
(a) h·(pq)=Ž(h,:p)(h,.;q) ∀ p,q EA, hEH where
$$\Delta(h)=Zh_{1,1}\otimes_{h_{2,1}}$$

(b) h·1,=E(h)1, ∀ hEH
We say A is a left H-module algebra is A is an algebra in the tensor category rep(H)
The category rep(H) is an example of a tensor category (abelian category u/ a tensor product,etc)
We can define the notion of an algebra and a bimodule in a tensor category E
eg an algebra is an object AEE along w/ a multiplication map mEHom_E(A⊗A,A) st certain diagrams commute
In a recent paper by Etingof, Kinser, and Walton (EKW) they develop the notion of tensor algebras T₅(E)
where S is an algebra in E and E is a bimodule in E

Background

Examples: (We omit the counit b/c checking the relevant conditions is straightforward.) Fix q ∈ lk[×] \{[±]1}³. We will use the following Hopf algebras. 1) The quantized enveloping algebra of the Lie algebra &, Uq(k) is given by generators ×, g, g⁻¹ with relations gg⁻¹=1=g⁻¹g, gx=qxg and comultication $\Delta(g)=gog, \Delta(x)=10x+xog$ If q is a primitive rth root of unity and n ∈ Z⁺ st r|n,

then the generalized Taft algebra is the Hopf quotient $T(r,n) = U_q(b)/\langle q^n - 1, x^r \rangle$ If r = n, we get the classical Taft algebra T(n) Background

Examples: 2) The quantized enveloping algebra of the Lie algebra strain strain by generators E, F, K, K⁻¹ with relations $KK^{-1} = 1 = K^{-1}K$ $KE = q^2 EK$ $[E, F] = \frac{K-K^{-1}}{q-q^{-1}}$ $KF = q^{-2}FK$ and comultiplication $\Delta(E) = 1 \otimes E + E \otimes K$ $\Delta(K) = K \otimes K$ $\Delta(F) = K^{-1} \otimes F + F \otimes 1$

> If q is a primitive nth root of Unity with $n \ge 2$ and n odd, we have the <u>small quantum group</u> or <u>Frobenius-Lusztickernel</u> $U_q(4l_2) = U_q(4l_2)/(K^n-1, E_n^n, F^n)$

<u>Note:</u> We have isomorphisms of Hopf algebras

$$\langle E, K \rangle \cong \bigcup_{q^2}(b)$$
 where $K \leftrightarrow q$, $E \leftrightarrow x$
 $\langle F, K \rangle \cong \bigcup_{q^2}(b)$ where $K \leftrightarrow q$, $F \leftrightarrow q^{-1}x$

Ug(dl2) has two subalgebras isomorphic to Taft algebras

<u>Marametrization of Actions of Uq(b) and Uq(alz) on IK2</u> Note, we assume all actions of Hopf algebras on path algebras preserve the filtration by path length $G = \langle q \rangle$, $f_{ix} q \in Ik^{x} \setminus \{ \pm 1 \}$ <u>Theorem</u>: The following data determines a Hopf action of Uq(b) on Ik2 and all such actions have this form. (i) A Hopf of Uq(b) on Ik2. determined by -A permutation action of G on 2. - A collection of scalars $(\forall_i)_i \in \mathcal{L}_0$ so that $\forall_{\forall_i} = q^{-1} \forall_i$ where $x \cdot e_i = x_i e_i - x_{g_i} e_{g_i}$ $\forall i \in \mathcal{A}_o$ (ii) A representation of G on IKZ, st s(g·a)=g·sa and t(g·a)=ta ∀ a∈Z, (iii) A lk-linear endomorphism $\sigma: \mathbb{k}_{20} \oplus \mathbb{k}_{21} \longrightarrow \mathbb{k}_{20} \oplus \mathbb{k}_{21}$, so that $(\sigma I) \sigma(Ik \lambda_0) = 0$ $(\sigma 2) \quad \sigma(a) = e_{sa}\sigma(a)e_{3} + a \in \mathcal{A}_{1}$ $(\sigma 3) \quad \sigma(q, a) = q^{-1}q \cdot \sigma(a) \quad \forall \quad a \in \mathcal{Z},$ where $X \cdot a = X_{ta}a - X_{q,sa}(q,a) + \sigma(a)$

X.3 is a Linear combination of the above

Let V = |k 2. Then the <u>arrow space</u> $V_j^i := e_i V e_j$ is the subspace of V spamed by arrows w source i and target j. We have the decomposition $V = \bigoplus_{i,j} V_j^i$ In the diagram above, the arrows represent arrow spaces.

Note, we have lcm(2,4)=4 copies of each arrow space

and gcd(2,4) = 2 isomorphism classes of arrow spaces

Parametrization of Actions of Uq(L) and Uq(AL2) on IK2

Corollary: If q is a primitive
$$r^{th}$$
 root of unity, then an action
of $U_{q}(t)$ on $IK2$ factors through $T(r,n) \Leftrightarrow$
(1) The action on $IK2_{0}$ factors through $T(r,n)$
(2) $\forall a \in 2_{1}$, $\xi_{sa}g^{r}a - \xi_{ta}a = \sigma^{r}(a)$
(3) g^{n} acts as identity on all of $IK2$

Parametrization of Actions of Uq(b) and Uq(dlz) on IK2

 $G = \langle K \rangle$

Theorem: Assuming #(G·i)>2 ∨ i∈20, the following data determines a filtered Hopf action of Uq(dd2) on IK2 and all such actions have this form. (i) A Hopf action of Uq(dd2) on IK20 -A permutation action of G on 20. -2 collections of scalars (8ⁱ).ca. and (8ⁱ).ca. as before w/ additional relation 8ⁱ/₁8ⁱ = -q/(1-q²)² ∨ i∈20 (ii) A representation of G on IK21 st s(K·a)=K·sa and t(K·a)=K·ta (iii) A pair of Linear endomorphisms σ^E and σ^F as before so that σ^Fσ^E=q²σ^Eσ^F

<u>Bimodules in rep(U;(L))</u>

Let $S=Ik2_0$ and $V=Ik2_1$, which is an S-bimodule st $Ik2\cong T_s(V)$ With a graded $U_q(L)$ -action, S is an algebra in $C:=rep(U_q(Lr))$ and V is an S-bimodule in C. Then, as in EKW, we call $T_s(V)$ a C-tensor algebra

Def: $T_s(V)$ is a <u>minimal</u>, <u>faithful</u> C-tensor algebra if V is an indecomposable S-bimodule in C and no two-sided ideal of S in C acts by O on V. These are the "building blocks" of C-tensor algebras.

<u>Bimodules in rep(U1(L))</u>

To study minimal, faithful C-tensor algebras, it is sufficient to consider the case where S has two indecomposable summands S, and Sz. The S indecomposable case is addressed by taking S_1=Sz. We examine S_1-S_2-bimodules in C.

For a positive integer m, let Sm=lk^m be the vector space with coordinate-wise multiplication.

The set of standard basis vectors $\{e_0, e_1, ..., e_{m-1}\}$ gives a system of primitive orthogonal idempotents Define a G-action on Sm by $\int e_i = e_{i+1 \pmod{m}}$ Identify Sm with the path algebra of a quiver w/m vertices and no arrows.

<u>Bimodules in rep(Uq(L))</u>

Fix positive integers m and m'. An S_m-S_m -bimodule V in vep(Uq(b)) is the path algebra of a quiver of the following form with a Uq(b) action.

The action of g gives l = lcm(m,m') isomorphic copies of each arrow space, and there are d = gcd(m,m') isomorphism types of arrow spaces.

Each arrow space
$$V_j^i$$
 is a representation of $\langle q^L \rangle \leq G$
 $\Rightarrow V_j^i = \bigoplus_{\lambda \in \mathbb{R}^n} V_j^i(\lambda)$ where $V_j^i(\lambda) = \{ v \in V_j^i | (\lambda 1 - q^e)^M v = 0 \text{ for } M \gg 0 \}$

The action of Uq(b) gives a map
$$\sigma$$
 w/ property (σ 3) σ g=q²'g σ
 $\Rightarrow \sigma(V_j^i(\lambda)) \subseteq V_{j^{+1}}^i(q^k\lambda)$
Let $\mathcal{B} \coloneqq$ category of Sm-Sm'-bimodules in rep(Uq(b))

<u>Bimodules in rep(Ug(L))</u>

Define a quiver $2(q^{l},d)$ w/ vertex set $|k^{\times} \mathbb{Z}/d\mathbb{Z}$ and arrows $(q^{l}\lambda,j+1) \longrightarrow (\lambda,j)$ (a-type) and a loop at each vertex (λ,j) (b-type)

The connected components of $2(q^{l}, d)$ have the form

$$\begin{split} f_{q}^{\pm} \operatorname{root} \operatorname{of} \operatorname{unity:} & \\ S_{\infty} = \dots \underbrace{a}_{(q^{l}, \lambda, k+1)} \underbrace{b}_{(\lambda, k)} \underbrace{a}_{(q^{l}, \lambda, k-1)} \underbrace{b}_{(q^{l}, \lambda, k-1)} \\ \text{let } p := \operatorname{lcm}(\operatorname{Iq}^{l}, d) \\ q = \operatorname{root} \operatorname{of} \operatorname{unity:} & \\ S_{p} = \underbrace{b}_{(q^{le-0}\lambda, p-1)} \underbrace{a}_{(q^{le-0}\lambda, p-2)} \underbrace{a}_{(q^{le-0}\lambda, p-2)} \underbrace{a}_{(q^{le-0}\lambda, p-2)} \underbrace{a}_{(\lambda, 0)} \\ \Gamma'(q^{l}, d) = \operatorname{the} \operatorname{quotient} \operatorname{of} \operatorname{Ik} 2(q^{l}, d) \operatorname{by} \quad \operatorname{all} \operatorname{relations} \operatorname{of} \operatorname{the} \operatorname{form} \operatorname{ba} = q^{l} \operatorname{ab} \\ \mathcal{N} = \operatorname{category} \operatorname{of} \operatorname{fin} \operatorname{dim} \operatorname{reps} \operatorname{of} \Gamma'(q^{l}, d) \operatorname{st} \operatorname{the} \operatorname{maps} \operatorname{associated} \operatorname{to} \operatorname{b}_{-\operatorname{type}} \operatorname{loops} \operatorname{ore} \operatorname{nilpotent} \\ \operatorname{Denote} \quad \mathcal{W} \in \mathcal{N} \quad \operatorname{by} \left((\mathcal{W}_{\lambda_{j}}, \mathcal{A}_{\lambda_{j}}, \mathcal{B}_{\lambda_{j}}) \\ \operatorname{ws} \operatorname{ssinged} \operatorname{to} \operatorname{b}_{\lambda_{j}} \right) \\ \end{array}$$

<u>Bimodules in rep(Uq(L))</u> <u>Theorem</u>: The categories \mathcal{B} and \mathcal{N} are equivalent. <u>~proof</u>: We construct mutually quasi-inverse functors. $\underline{\mathcal{B}} \longrightarrow \mathcal{N}: \quad \text{Given } \forall \in \mathcal{B}, \quad \text{let } W_{\lambda,j} = V^{0}_{\tau \alpha,j}(\lambda)$ $A_{\lambda,j} = \sigma |_{W_{\lambda}} : W_{\lambda,j} \longrightarrow W_{q^{t}\lambda,j,m}$ $\mathcal{B}_{\lambda j} = (q^{l} - \lambda 1) \bigg|_{W_{\lambda}} \mathcal{W}_{\lambda j} \longrightarrow \mathcal{W}_{\lambda j} \text{ is nilpotent}$ $\underline{\mathcal{N}} \longrightarrow \underline{\mathcal{B}}: \quad \text{Given } (W_{\lambda_j}, A_{\lambda_j}, \underline{\mathcal{B}}_{\lambda_j}) \in \mathcal{N}$ Let $\widetilde{W}_{j}^{\circ} = \bigoplus_{\tau \in X, k=1}^{m-1} \widetilde{W}_{\lambda,k}$ and $\widetilde{W} = \bigoplus_{\tau = 1}^{m-1} \widetilde{W}_{j}^{\circ}$ Let $H \leq |kG|$ be the subalgebra generated by g^l Then $\|\mathbf{k} \mathbf{G} \otimes_{\mathsf{H}} \widetilde{\mathsf{w}} \in \mathcal{B}$ given à bimodule structure $e_0 \widetilde{W} e_j = \widetilde{W}_j^0$ and actions $q^{\ell} \cdot \omega = \lambda \omega + B_{\lambda_j}(\omega)$ for $\omega \in W_{\lambda_j}$ $\times \cdot (q^{t} \otimes \omega) = q^{-t} \left(\chi_{j} q^{t} \otimes \omega - \chi_{0} q^{-1} q^{t+1} \otimes \omega + q^{t+2} \otimes A_{\lambda_{j}}(\omega) \right) f_{0} \quad \omega \in W_{\lambda_{j}}$ \mathbb{Z}

 $q = \text{ primitive } r^{\text{th}} \text{ root of unity}$ $T = quiver \quad w/ \text{ Vertices } (\zeta, i)$ where ζ is an $(n/\ell)^{\text{th}}$ root of unity and $i \in \mathbb{Z}/d\mathbb{Z}$ w/a - type arrows and connected components of the form $(\zeta, d-1)^{\bullet} \xrightarrow{0} (\zeta, d-2) \xrightarrow{0} (\zeta,$

Uq (Al2)

assume m, m'>2 and q=primitive nth root of unity w/ n>2 and n odd

Actions parametrized by data for the Borel subalgebras $U_{q^2}(L)$, $U_{q^2}(L)$

 \Rightarrow we have two collections of scalars $\{\aleph_i^E\}$ and $\{\aleph_i^E\}$ and maps σ^E and σ^F so that $q^2\sigma^E\sigma^F = \sigma^F\sigma^E$

example with lcm(lq2el, d)=3

(1,0)

actions that factor through uq(422):

with relations $q^2 a c = ca$, $a^d = constant$, $c^d = constant$

Thank you! Questions?