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Background Koszul Algebras 4 Quadrics Further Questions

Notation

We’ll assume the following notation unless otherwise stated:

k a field

S = k[x1, . . . , xn] a polynomial ring over k

I ⊆ S an ideal

R = S/I
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Free Resolutions and Betti Numbers

Edge Ideals

To every (simple) graph G, we can associate a square-free quadratic monomial
ideal. If G has vertex set {v1, . . . , vn}, the edge ideal of G is the ideal of
S = k[x1, . . . , xn] given by:

I(G) = (xixj | vivj is an edge of G)

Example

The edge ideal of the graph below is I = (xy, xz, yz) ⊆ S = k[x, y, z].

x

y

z
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Free Resolutions and Betti Numbers

The Taylor Resolution

If I = (m1, . . . ,mg) is a monomial ideal, then for each J ⊆ {1, . . . , g} we set

mJ = lcm(mj | j ∈ J)

The Taylor resolution of R is the free resolution F• given by

Fi =
⊕
|J|=i

SeJ ∂(eJ) =

i∑
p=1

(−1)p+1 mJ

mJ\{jp}
eJ\{jp}

where j1 < j2 < · · · < ji.
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Free Resolutions and Betti Numbers

Running Example

For I = (xy, xz, yz) in S = k[x, y, z], the Taylor resolution of R is:

Se{xy,xz,yz}

Se{xz,yz}

⊕
Se{xy,yz}

⊕
Se{xy,xz}

Sexy

⊕
Sexz

⊕
Seyz

Se1

(
1
−1
1

) (
0 −z −z
−y 0 y
x x 0

)
( xy xz yz )
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Free Resolutions and Betti Numbers

Minimal Free Resolutions

When the ideal I is graded, R = S/I has a unique up to isomorphism minimal
free resolution:

The matrices in the resolution have homogeneous entries of positive degree.

We keep track of the degrees of the entries by grading the free modules in
the resolution.

S(−j)r denotes the free module Sr with basis vectors in degree j.
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Free Resolutions and Betti Numbers

Graded Betti Numbers

For a quotient ring R = S/I with minimal free resolution

0 −→ Fp
ϕp−→ Fp−1 −→ · · · −→ F1

ϕ1−→ F0

we can write each free module Fi =
⊕

j∈Z S(−j)βi,j with βi,j ≥ 0.

The ranks βi,j = βSi,j(R) are called the graded Betti numbers of R over S.

This information is often displayed in a table, called the Betti table of R, whose
entry in the i-th column and j-th row is βSi,i+j(R).
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Free Resolutions and Betti Numbers

Running Example

Unfortunately, the Taylor resolution of R = k[x, y, z]/(xy, xz, yz) is not minimal:

S(−3) S(−3)3 S(−2)3 S

(
1
−1
1

) (
0 −z −z
−y 0 y
x x 0

)
( xy xz yz )
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Free Resolutions and Betti Numbers

Running Example

The minimal free resolution of R = k[x, y, z]/(xy, xz, yz) is:

0 S(−3)2 S(−2)3 S

(
0 −z
−y 0
x x

)
( xy xz yz )

0 1 2
0 1 – –
1 – 3 2

The 2-minors of the matrix of syzygies recover the generators of I. Such
resolutions are called Hilbert-Burch resolutions.
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Hilbert Series and Related Invariants

Hilbert Functions

The Hilbert function of R is HF(R, d) = dimk Rd.

We can compute the Hilbert function of R from its graded Betti numbers
over S:

· · · −→ F2 −→ F1 −→ F0 −→ R −→ 0

HF(R, d) =
∑
i,j

(−1)i dimk[Fi]d

=
∑
i,j

(−1)iβSi,j(R)

(
n+ d− j − 1

n− 1

)
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Hilbert Series and Related Invariants

Hilbert Series

The generating series HR(t) =
∑
d HF(R, d)td ∈ Z[[t]] is a rational function:

HR(t) =
hR(t)

(1− t)n−c

for a unique polynomial hR(t) ∈ Z[t] with hR(1) > 0 and positive integer c.

We call ht I = c the height (or codimension) of I.

We call e(R) = hR(1) the multiplicity (or degree) of I.
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Hilbert Series and Related Invariants

Running Example

If I = (xy, xz, yz) ⊆ S = k[x, y, z], the Hilbert series of R = S/I is:

0 1 2
0 1 – –
1 – 3 2

HR(t) =
1

(1− t)3
− 3t2

(1− t)3
+

2t3

(1− t)3

=
1 + 2t

1− t

Since (1− t) divides the numerator twice, ht I = 2.

e(R) = 1 + 2 = 3
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Koszul Algebras

Let R+ =
⊕

d>0Rd.

R is a Koszul algebra if the minimal free resolution of R/R+
∼= k over R has

the form
· · · −→ R(−3)β3 −→ R(−2)β2 −→ R(−1)β1 −→ R

Example

Let R = k[x]/(x2). Then the minimal free resolution of k is:

· · · R(−3) R(−2) R(−1) Rx x x

So R is Koszul.
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Koszul Algebras

Koszul algebras were introduced by Priddy in 1970 as a way of unifying
constructions of resolutions over Steenrod algebras from algebraic topology
and universal enveloping algebras of Lie algebras.

If R = S/I is a Koszul algebra, then I is generated by quadrics
(homogeneous polynomials of degree 2).

There is strong relationship between a Koszul algebra R and its quadratic
dual R! (although R! is non-commutative).
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Examples of Koszul Algebras

I Polynomial rings (and exterior algebras)

I Coordinate rings of Grassmannians and suitably general smooth curves

I Many types of toric rings

I All high Veronese subrings of any standard graded algebra

I Quotients by quadratic monomial ideals
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Bounds on Betti Numbers

Question (Avramov-Conca-Iyengar ‘10)

If R is Koszul and I is minimally generated by g elements, does the following
inequality hold for all i?

βSi (R) ≤
(
g

i

)
In particular, is pdS R ≤ g?

Motivating philosophy: This is true for quadratic monomial ideals. Reasonable
properties of quadratic monomial ideals should hold for general Koszul algebras.
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Known Cases

R is G-quadratic: after a suitable linear change of coordinates ϕ : S → S,
the ideal ϕ(I) has a quadratic Gröbner basis.

If I has a quadratic initial ideal J with g generators, then I is also
generated by g quadrics and

βSi (R) ≤ βSi (S/J) ≤
(
g

i

)

R is LG-quadratic: R is a quotient of a G-quadratic algebra A by an
A-sequence of linear forms.
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A Cautionary Example (Conca ‘13)

The ring

R =
k[x, y, z, w]

(xy, xw, (x− y)z, z2, x2 + zw)

is Koszul but not LG-quadratic.

Its Betti table is

0 1 2 3 4
0 1 – – – –
1 – 5 4 – –
2 – – 4 6 2
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Known Cases

The preceding question has an affirmative answer if:

ht I = g, so I is a quadratic complete intersection.

ht I = 1, so I = zJ for a linear form z and J a linear complete intersection.

g = 3 (Boocher-Hassanzadeh-Iyengar ‘17)

ht I = g − 1, so I is an almost complete intersection (M ‘18)
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Known Cases

In fact, BHI gave a complete classification of the possible Betti tables of Koszul
algebras defined by 3 quadrics. They are:

0 1 2 3
0 1 – – –
1 – 3 3 1

0 1 2 3
0 1 – – –
1 – 3 1 –
2 – – 2 1

0 1 2
0 1 – –
1 – 3 2︸ ︷︷ ︸

ht I=2

0 1 2 3
0 1 – – –
1 – 3 – –
2 – – 3 –
3 – – – 1
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Koszul Almost Complete Intersections

Theorem (M ‘18)

Let R = S/I be a Koszul almost complete intersection with I minimally
generated by g quadrics for some g ≥ 2. Then βS2,3(R) ≤ 2, and:

(a) If βS2,3(R) = 1, then I = (xz, zw, q3, . . . , qg) for some linear forms x, z, and
w and some regular sequence of quadrics q3, . . . , qg on S/(xz, zw).

(b) If βS2,3(R) = 2, then I = I2(M) + (q4, . . . , qg) for some 3× 2 matrix of
linear forms M with ht I2(M) = 2 and some regular sequence of quadrics
q4, . . . , qg on S/I2(M).

In particular, R satisfies βSi (R) ≤
(
g
i

)
for all i.
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Buying Into Edge Ideals

For g = 4, it is
enough to prove the
Betti number bound
when ht I = 2.

Based on edge ide-
als of graphs with 4
edges, we expect R
to have one of the
Betti tables:

Case βS(R) Graphs

(i)

0 1 2 3
0 1 – – –
1 – 4 4 1

1

2 3

4 1

2

3 4 1

2

3 4 5

(ii)

0 1 2 3 4
0 1 – – – –
1 – 4 3 1 –
2 – – 3 3 1

1

2

3 4 5

6

(iii)

0 1 2 3
0 1 – – –
1 – 4 3 –
2 – – 1 1

1 2 3 4 5

(iv)

0 1 2 3 4
0 1 – – – –
1 – 4 2 – –
2 – – 4 4 1

1 2 3

4 5 6
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Koszul Algebras Defined by 4 Quadrics

Theorem (Mantero-M ‘18)

If R = S/I is a Koszul algebra with ht I = 2 and I minimally generated by g = 4,
then the Betti table of R is one of the four possibilities realized by edge ideals. In
particular, βSi (R) ≤

(
4
i

)
for all i.

Even better: We completely describe the structure of the possible defining ideals
when k = k.
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A Bound on the Multiplicity

Proposition (Mantero-M ‘18)

If R = S/I is defined by g ≥ 4 quadrics and ht I = 2, then e(R) ≤ 2.

In general, e(R) ≤ 3 as long as I is not a complete intersection
(Huneke-Mantero-McCullough-Seceleanu ‘13).

A linkage argument shows e(R) = 3 if and only if the unmixed part of I is
I2(M) for some 3× 2 matrix of linear forms.
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TOOL: Linkage

Two ideals I, J ⊆ S of height c are directly linked if there is a complete
intersection ideal L ⊆ I ∩ J of height c such that (L : I) = J and (L : J) = I,
where:

(L : I) = {f ∈ S | fI ⊆ L}

Linked ideals are unmixed, so the unmixed part of I is directly linked to
(L : I) for any complete intersection L ⊆ I of two quadrics.

If ht I = 2, then e(S/J) = e(S/L)− e(S/I) = 4− 3 = 1, so J is generated
by linear forms.
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TOOL: Linkage

Theorem (Avramov-Kustin-Miller ‘88)

An ideal I is directly linked to a complete intersection of height c if and only if
there is a c× c matrix X and a 1× c matrix Y such that I = I1(Y X) + Ic(X).
Such an ideal is called a Northcott ideal.

Explicitly, if I is linked to a complete intersection J = (f1, . . . , fc) by the
complete intersection L = (h1, . . . , hc) ⊆ J , then

Y = ( f1 ··· fc ) X = (ai,j)

where hj =
∑
i ai,jfi.

For a height 2 ideal generated by quadrics, we see that I = I2(M) for some
3× 2 matrix of linear forms.
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The Multiplicity 2 Case

Unmixed Parts

Recall that the unmixed part Iunm of I is the intersection of all primary
components J of I with ht J = ht I.

Proposition (Engheta ‘07)

If e(R) = ht I = 2, then Iunm has one of the following forms:

(i) (x, y) ∩ (z, w) for independent linear forms x, y, z, and w.

(ii) (x, y)2 + (xy + zw) for independent linear forms x, y and forms z, w such
that ht(x, y, z, w) = 4.

(iii) (x, q) for some linear form x and quadric q.
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The Multiplicity 2 Case

Cases (i) and (ii)

Theorem (Mantero-M ‘18)

Let R = S/I be a ring defined by g ≥ 4 quadrics with ht I = e(R) = 2. Then I
has one of the following forms:

(iA) (x, y) ∩ (z, w) or (x, y)2 + (xz + yw) for independent linear forms x, y, z
and w, in which case we must have g = 4.

(iB) (a1x, . . . , ag−1x, q) for independent linear forms a1, . . . , ag−1 and some
linear form x and quadric q ∈ (a1, . . . , ag−1) \ (x).

(ii) (a1x, . . . , ag−1x, q) for independent linear forms a1, . . . , ag−1 and some
linear form x and quadric q which is a nonzerodivisor modulo
(a1x, . . . , ag−1x).
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The Multiplicity 2 Case

Cases (i) and (ii)

Corollary

If R = S/I is a ring defined by g ≥ 4 quadrics with ht I = e(R) = 2, then R is
LG-quadratic so that βSi (R) ≤

(
g
i

)
for all i.

When g = 4, the Betti table of R is one of:

0 1 2 3
0 1 – – –
1 – 4 4 1

0 1 2 3 4
0 1 – – – –
1 – 4 3 1 –
2 – – 3 3 1
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Multiplicity 1

A Bound on the Projective Dimension

Theorem (Huneke-Mantero-McCullough-Seceleanu ‘15)

The projective dimension of rings R = S/I defined by 4 quadrics is at most 6,
and this bound is realized by I = (x2, y2, a3x+ b3y, a4x+ b4y) with
ht(x, y, a3, a4, b3, b4) = 6.

A Koszul algebra with ht I ≤ g − 2 has at least 2 linear syzygies on I.

Theorem (Mantero-M ‘18)

If I is a height 2 ideal minimally generated by four quadrics with at least 2 linear
syzygies, then pdS R ≤ 4.
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Multiplicity 1

Representation by Minors

When ht I = 2 and e(R) = 1, the ideal I = (q1, . . . qg) is contained in a unique
height two minimal prime (x, y) generated by linear forms.

Writing qi = aix+ biy for some linear forms ai and bi, we say that I is
represented by minors by the matrix

M =

(
y a1 · · · ag

−x b1 · · · bg

)
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Multiplicity 1

Representation by Minors

Theorem (Huneke-Mantero-McCullough-Seceleanu ‘13)

After a suitable change of generators for I and (x, y), there are only 5 possible
forms for M :

(1) M is 1-generic

(2) M =
(

y 0 a2 ··· ag
−x b1 b2 ··· bg

)
where D =

(
y a2 ··· ag
−x b2 ··· bg

)
is 1-generic

(3) M =
(

y 0 0 a3 ··· ag
−x b1 b2 b3 ··· bg

)
(4) M =

(
y 0 a2 a3 ··· ag
−x b1 0 b3 ··· bg

)
where D =

(
y a3 ··· ag
−x bb ··· bg

)
is 1-generic

(5) M =
(

y 0 a2 a3 ··· ag
−x b1 0 λa3 ··· bg

)
for some λ ∈ k
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Multiplicity 1

TOOL: 1-Generic Matrices

A r × s matrix M of linear forms in S is 1-generic if whenever we have
wTMv = 0 for w ∈ kr and v ∈ ks, we have either w = 0 or v = 0.

The exact sequence 0→ S/(I : y)(−1)
y→ S/I → S/(I, y)→ 0 induces an

exact sequence:

Tor2(S/(I : y), k)3 TorS2 (S/I, k)3 TorS2 (S/(I, y), k)3

TorS1 (S/(I : y), k)2 0

If M is 1-generic and k = k, then (I : y) = I2(M) is a prime ideal generated
by quadrics of expected height.

Mastroeni OSU



Background Koszul Algebras 4 Quadrics Further Questions

Multiplicity 1

TOOL: 1-Generic Matrices

In that case, S/I2(M) has an Eagon-Northcott resolution:

0 1 2 · · · g

0 1 – – – –
1 –

(
g+1
2

)
2
(
g+1
3

)
· · · g

(
g+1
g+1

)
The Betti table of S/(I, y) = S(y, a1x, . . . , agx) is:

0 1 2 3 · · · g + 1

0 1 1 – – – –
1 – g

(
g+1
2

) (
g+1
3

)
· · · 1

So, S/I has no linear syzygies if M is 1-generic!
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Multiplicity 1

Betti Tables of Koszul Algebras Defined by 4 Quadrics

It suffices to find the possible Betti tables when ht I = 2 and e(R) = 1.

Being Koszul together with the bound on the projective dimension greatly
restricts the shape of the Betti table of R:

I βSi,j(R) = 0 for all i and j > 2i. (Backelin ‘88, Kempf ‘90)

I βSi,2i(R) = 0 for i > ht I. (Avramov-Conca-Iyengar ‘10)

I βSg,g+1(R) = 0 if ht I ≥ 2. (consequence of Koh ‘99)
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Multiplicity 1

Betti Tables of Koszul Algebras Defined by 4 Quadrics

It suffices to find the possible Betti tables when ht I = 2 and e(R) = 1.

There are only 2 possible shapes for the Betti table of R:

0 1 2 3
0 1 – – –
1 – 4 a c

2 – – b d

0 1 2 3 4
0 1 – – – –
1 – 4 a c –
2 – – b d e

3 – – – – f

Computing the Hilbert series using that ht I = 2 and e(R) = 1 reduces this
to an integer programming problem.
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Multiplicity 1

Case (iii)

Theorem (Mantero-M ‘19)

The ring R = S/I has Betti table

0 1 2 3
0 1 – – –
1 – 4 3 –
2 – – 1 1

if and only if I = (xz, yz, a3x+ b3y, a4x+ b4y) for some linear forms x, y, z, a3,
a4, b3, b4 such that ht(a3x+ b3y, a4x+ b4y, a3b4 − a4b3, z) = 3 and
ht(x, y) = 2. In particular, R is LG-quadratic.

Mastroeni OSU



Background Koszul Algebras 4 Quadrics Further Questions

Multiplicity 1

TOOL: Annihilators of Cohomology

The dual of the last differential in the resolution of R yields a presentation:

S(3)3 ⊕ S(4)
ϕ∗3−→ S(5) −→ Ext3S(R,S) −→ 0

For ai = AnnS ExtiS(R,S), we have
∏
i ai ⊆ I.

(Eisenbud-Evans ??, Schenzel ‘79)

a2 = AnnS Ext2S(R,S) = Iunm = (x, y).
(Eisenbud-Huneke-Vasconcelos ‘92)
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Multiplicity 1

TOOL: Annihilators of Cohomology

If z is the linear form in the last differential of the resolution of R, then
z 6= 0 and z(x, y) ⊆ a2a3 ⊆ I.

Theorem (Buchsbaum-Eisenbud Acyclicity Criterion)

A complex of finitely generated free S-modules

0 −→ Fs
ϕs−→ Fs−1 −→ · · · −→ F1

ϕ1−→ F0 −→ 0

is acyclic if and only if ht Iri(ϕi) ≥ i for all i ≥ 1, where
ri =

∑
j≥i(−1)j−i rankFj .
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Multiplicity 1

Case (iv)

Surprisingly, having the Betti table below does not determine whether R is
Koszul!

0 1 2 3 4
0 1 – – – –
1 – 4 2 – –
2 – – 4 4 1

(∗)
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Multiplicity 1

Case (iv)

Theorem (Mantero-M ‘19)

The ring R = S/I has Betti table (∗) if and only if for some linear forms
satisfying specific height conditions, I has one of the the following forms:

(a) (x2, b3x, a3x+ b3y, a4x+ b4y)

(b) (xy, a2x, b3y, a4x+ b4y)

(c) (b3x, b4x, a3x+ b3y, a4x+ b4y)

(d) (a1x, a2x, b3y, b4y) with (a1x, a2x) and (b3y, b4y)

transversal
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Multiplicity 1

TOOL: Buchsbaum-Rim Complexes

We can view the four quadric generators of I = (q1, q2, q3, q4) as syzygies on its
4× 2 matrix of linear syzgies `:

(
q1 q2 q3 q4

)
` = 0 =⇒ `T


q1

q2

q3

q4

 = 0

If I has Betti table (∗), then ` cannot be 1-generic!

Mastroeni OSU



Background Koszul Algebras 4 Quadrics Further Questions

Multiplicity 1

TOOL: Buchsbaum-Rim Complexes

If ` were 1-generic:

I2(`) is a prime ideal generated by quadrics of expected height.

Coker `T is resolved by a Buchsbaum-Rim complex:

S(−4)2 S(−3)4 S(−1)4 S2−` Q `T

Q =


0 −∆3,4 ∆2,4 −∆2,3

∆3,4 0 −∆1,4 ∆1,3

−∆2,4 ∆1,4 0 −∆1,2

∆2,3 −∆1,3 ∆1,2 0


where ∆i,j is the minor involving rows i and j of `.
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Multiplicity 1

TOOL: Buchsbaum-Rim Complexes

If ` were 1-generic:

This shows that I ⊆ I2(`).

Of the representations by minors of height 2 ideals of multiplicity 1 described
by Huneke-Mantero-McCullough-Seceleanu, we know I must contain a
reducible quadric if it has 2 independent linear syzygies.

So, ` is not 1-generic. Considering how many other zeros can appear in ` gives
the 4 possible forms of the ideal.
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Multiplicity 1

Case (iv)
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Multiplicity 1

Detecting Non-Koszulness

Theorem (M ‘18, Avramov-Conca-Iyengar ‘10)

If R is Koszul, then SyzS1 (I) is generated by linear and Koszul syzygies.

For example, if I = (xy, a2x, b3y, a4x+ b4y) and we set q = a4x+ b4y:

SyzS1 (I) = Im


−a2 −b3 q 0 0 0

y 0 0 q 0 a4b3

0 x 0 0 q a2b4

0 0 −xy −a2x −b3y −a2b3


where the last column is not generated by the linear and Koszul syzygies.

Sadly, this argument fails if I = (b3x, b4x, a3x+ b3y, a4x+ b4y).
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Multiplicity 1

Detecting Non-Koszulness
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Multiplicity 1

Another Cautionary Example (Roos ‘93)

For each integer n ≥ 2, the resolution of Q over the ring

Rn =
Q[x, y, z, u, v, w]

(x, y)2 + (v, w)2 + L+ (z, u)2

where
L = ((x+ nw)z − wu,wz + (x+ (n− 2)w)u, yz, vu)

is linear for n steps but fails to be linear at the (n+ 1)-th step.
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Multiplicity 1

Passing Koszulness Around

Proposition (Conca-De Negri-Rossi ‘13)

Let S be a standard graded k-algebra and R be a quotient ring of S.

(a) If S is Koszul and regS(R) ≤ 1, then R is Koszul.

(b) If R is Koszul and regS(R) is finite, then S is Koszul.

Here:
regS(R) = sup{j | βSi,i+j(R) 6= 0}

In particular, Koszul-ness passes to and from quotients by a regular sequence of
quadrics.

Mastroeni OSU



Background Koszul Algebras 4 Quadrics Further Questions

Multiplicity 1

TOOL: Symmetric Algebras

It is enough to check the ring below is not Koszul.

R =
k[x, y, a, b]

(x2 − y2, xy, bx, ax− by)

Given a module M with t generators over a ring R′, a presentation of the
symmetric algebra SymR′(M) is given by:

SymR′(M) =
R′[u1, . . . , ut]

(
∑
i fiui | (f1, . . . , ft) ∈ SyzR

′

1 (M))
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Multiplicity 1

TOOL: Symmetric Algebras

It is enough to check the ring below is not Koszul.

R =
k[x, y, a, b]

(x2 − y2, xy, bx, ax− by)
∼= SymR′(M)

where R′ = k[x, y]/(x2 − y2, xy) and M has a periodic resolution

· · · R′(−2)2 R′(−1)2 R′2 M 0

(
y 0
x y

) (
x 0
−y x

)
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Multiplicity 1

TOOL: Symmetric Algebras

Theorem (Herzog-Hibi-Ohsugi ‘00)

Suppose ϕ : R→ R′ is an algebra retract of standard graded k-algebras. Then R
is Koszul if and only if R′ is Koszul and R′ has a linear resolution as an R-module
(via ϕ).

This reduces the number of syzygies we need to compute from about 340 for
k to about 80 for R′.

The resolutions of R′ and k over R fail to be linear 6 steps back if
char(k) 6= 2 and 5 steps back if char(k) = 2.

Mastroeni OSU



Background Koszul Algebras 4 Quadrics Further Questions

Multiplicity 1

TOOL: Symmetric Algebras

Theorem (Herzog-Hibi-Ohsugi ‘00)

Suppose ϕ : R→ R′ is an algebra retract of standard graded k-algebras. Then R
is Koszul if and only if R′ is Koszul and R′ has a linear resolution as an R-module
(via ϕ).

This reduces the number of syzygies we need to compute from about 340 for
k to about 80 for R′.

The resolutions of R′ and k over R fail to be linear 6 steps back if
char(k) 6= 2 and 5 steps back if char(k) = 2.

Mastroeni OSU



Background Koszul Algebras 4 Quadrics Further Questions

Multiplicity 1

Consequences of the Structure Theorem

Theorem (Mantero-M ‘19)

All Koszul algebras defined by g ≤ 4 quadrics are LG-quadratic.

Conca’s example of a Koszul algebra that is not LG-quadratic is minimal in
terms of height, multiplicity, and number of generators.

We can explicitly describe the defining ideal of any Koszul algebra defined by
g ≤ 4 quadrics (for k = k).

We are able to determine when such Koszul algebras have the Backelin-Roos
and absolutely Koszul properties.
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Further Questions

1. What about Koszul algebras defined by g ≥ 5 quadrics?

What do Koszul algebras R = S/I defined by g = 5 quadrics with
ht I = 2 and e(R) = 1 look like?

2. Is there a method for producing other examples of Koszul algebras which are
not LG-quadratic?

3. Can we remove the k = k assumption from the structure theorem?

Is there a structure theorem for nondegenerate prime ideals P with
ht I = e(S/P ) = 2?
Is there some ring which is not LG-quadratic but becomes LG-quadratic
after field extension?
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Further Questions

4. What other nice properties of edge ideals carry over to general Koszul
algebras?

Is regR ≤ ht I? (It’s known that regR ≤ pdS R.)

5. Can we characterize when SymR(M) is Koszul?
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