The Structure of Koszul Algebras Defined by Four Quadrics

Matthew Mastroeni
(joint with Paolo Mantero)
Oklahoma State University

Notation

We'll assume the following notation unless otherwise stated:

- k a field
- $S=k\left[x_{1}, \ldots, x_{n}\right]$ a polynomial ring over k
- $I \subseteq S$ an ideal
- $R=S / I$

Outline

1 Commutative Algebra Background

- Free Resolutions and Betti Numbers
- Hilbert Series and Related Invariants

2 Betti Numbers of Koszul Algebras
3 Koszul Algebras Defined by 4 Quadrics

- The Multiplicity 2 Case
- The Multiplicity 1 Case

4 Further Questions

Outline

1 Commutative Algebra Background

- Free Resolutions and Betti Numbers

■ Hilbert Series and Related Invariants
2 Betti Numbers of Koszul Algebras
3 Koszul Algebras Defined by 4 Quadrics

- The Multiplicity 2 Case
- The Multiplicity 1 Case

4 Further Questions

Outline

1 Commutative Algebra Background
■ Free Resolutions and Betti Numbers

- Hilbert Series and Related Invariants

2 Betti Numbers of Koszul Algebras
3 Koszul Algebras Defined by 4 Quadrics

- The Multiplicity 2 Case
- The Multiplicity 1 Case

4 Further Questions

Edge Ideals

To every (simple) graph G, we can associate a square-free quadratic monomial ideal. If G has vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$, the edge ideal of G is the ideal of $S=k\left[x_{1}, \ldots, x_{n}\right]$ given by:

$$
I(G)=\left(x_{i} x_{j} \mid v_{i} v_{j} \text { is an edge of } G\right)
$$

Example

The edge ideal of the graph below is $I=(x y, x z, y z) \subseteq S=k[x, y, z]$.

The Taylor Resolution

If $I=\left(m_{1}, \ldots, m_{g}\right)$ is a monomial ideal, then for each $J \subseteq\{1, \ldots, g\}$ we set

$$
m_{J}=\operatorname{lcm}\left(m_{j} \mid j \in J\right)
$$

The Taylor resolution of R is the free resolution F • given by

$$
F_{i}=\bigoplus_{|J|=i} S e_{J} \quad \partial\left(e_{J}\right)=\sum_{p=1}^{i}(-1)^{p+1} \frac{m_{J}}{m_{J \backslash\left\{j_{p}\right\}}} e_{J \backslash\left\{j_{p}\right\}}
$$

where $j_{1}<j_{2}<\cdots<j_{i}$.

Running Example

For $I=(x y, x z, y z)$ in $S=k[x, y, z]$, the Taylor resolution of R is:

$$
\begin{aligned}
& S e_{\{x y, x z\}} \\
& S e_{y z}
\end{aligned}
$$

Minimal Free Resolutions

When the ideal I is graded, $R=S / I$ has a unique up to isomorphism minimal free resolution:

- The matrices in the resolution have homogeneous entries of positive degree.
- We keep track of the degrees of the entries by grading the free modules in the resolution.
- $S(-j)^{r}$ denotes the free module S^{r} with basis vectors in degree j.

Graded Betti Numbers

For a quotient ring $R=S / I$ with minimal free resolution

$$
0 \longrightarrow F_{p} \xrightarrow{\varphi_{p}} F_{p-1} \longrightarrow \cdots \longrightarrow F_{1} \xrightarrow{\varphi_{1}} F_{0}
$$

we can write each free module $F_{i}=\bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{i, j}}$ with $\beta_{i, j} \geq 0$.
The ranks $\beta_{i, j}=\beta_{i, j}^{S}(R)$ are called the graded Betti numbers of R over S.
This information is often displayed in a table, called the Betti table of R, whose entry in the i-th column and j-th row is $\beta_{i, i+j}^{S}(R)$.

Running Example

Unfortunately, the Taylor resolution of $R=k[x, y, z] /(x y, x z, y z)$ is not minimal:

$$
S(-3) \xrightarrow{\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)} S(-3)^{3} \xrightarrow{\left(\begin{array}{ccc}
0 & -z & -z \\
-y & 0 & y \\
x & x & 0
\end{array}\right)} S(-2)^{3} \xrightarrow{(x y x z y z)} S
$$

Running Example

The minimal free resolution of $R=k[x, y, z] /(x y, x z, y z)$ is:

$$
0 \longrightarrow S(-3)^{2} \xrightarrow{\left(\begin{array}{cc}
0 & -z \\
-y & 0 \\
x & x
\end{array}\right)} S(-2)^{3} \xrightarrow{(x y x z y z)} S
$$

	0	1	2
0	1	-	-
1	-	3	2

Running Example

The minimal free resolution of $R=k[x, y, z] /(x y, x z, y z)$ is:

$$
0 \longrightarrow S(-3)^{2} \xrightarrow{\left(\begin{array}{cc}
0 & -z \\
-y & 0 \\
x & x
\end{array}\right)} S(-2)^{3} \xrightarrow{(x y x z y z)} S
$$

	0	1	2
0	1	-	-
1	-	3	2

The 2-minors of the matrix of syzygies recover the generators of I. Such resolutions are called Hilbert-Burch resolutions.

Outline

1 Commutative Algebra Background

- Free Resolutions and Betti Numbers

■ Hilbert Series and Related Invariants
2 Betti Numbers of Koszul Algebras
3 Koszul Algebras Defined by 4 Quadrics

- The Multiplicity 2 Case
- The Multiplicity 1 Case

4 Further Questions

Hilbert Functions

The Hilbert function of R is $\operatorname{HF}(R, d)=\operatorname{dim}_{k} R_{d}$.

- We can compute the Hilbert function of R from its graded Betti numbers over S :

$$
\begin{aligned}
& \cdots \longrightarrow F_{2} \longrightarrow F_{1} \longrightarrow F_{0} \longrightarrow R \longrightarrow 0 \\
& \mathrm{HF}(R, d)=\sum_{i, j}(-1)^{i} \operatorname{dim}_{k}\left[F_{i}\right]_{d} \\
&=\sum_{i, j}(-1)^{i} \beta_{i, j}^{S}(R)\binom{n+d-j-1}{n-1}
\end{aligned}
$$

Hilbert Series

- The generating series $\mathrm{H}_{R}(t)=\sum_{d} \mathrm{HF}(R, d) t^{d} \in \mathbb{Z}[[t]]$ is a rational function:

$$
\mathrm{H}_{R}(t)=\frac{h_{R}(t)}{(1-t)^{n-c}}
$$

for a unique polynomial $h_{R}(t) \in \mathbb{Z}[t]$ with $h_{R}(1)>0$ and positive integer c.

Hilbert Series

- The generating series $\mathrm{H}_{R}(t)=\sum_{d} \mathrm{HF}(R, d) t^{d} \in \mathbb{Z}[[t]]$ is a rational function:

$$
\mathrm{H}_{R}(t)=\frac{h_{R}(t)}{(1-t)^{n-c}}
$$

for a unique polynomial $h_{R}(t) \in \mathbb{Z}[t]$ with $h_{R}(1)>0$ and positive integer c.

- We call ht $I=c$ the height (or codimension) of I.
- We call $e(R)=h_{R}(1)$ the multiplicity (or degree) of I.

Running Example

If $I=(x y, x z, y z) \subseteq S=k[x, y, z]$, the Hilbert series of $R=S / I$ is:

$$
\begin{array}{r}
\\
\begin{array}{r|rrr}
& 0 & 1 & 2 \\
0 & 1 & - & - \\
1 & - & 3 & 2
\end{array} \\
\mathrm{H}_{R}(t)=\frac{1}{(1-t)^{3}}-\frac{3 t^{2}}{(1-t)^{3}}+\frac{2 t^{3}}{(1-t)^{3}}
\end{array}
$$

Running Example

If $I=(x y, x z, y z) \subseteq S=k[x, y, z]$, the Hilbert series of $R=S / I$ is:

$$
\begin{gathered}
\begin{array}{c|ccc}
& 0 & 1 & 2 \\
\hline 0 & 1 & - & - \\
1 & - & 3 & 2
\end{array} \\
\mathrm{H}_{R}(t)=\frac{1}{(1-t)^{3}}-\frac{3 t^{2}}{(1-t)^{3}}+\frac{2 t^{3}}{(1-t)^{3}}=\frac{1+2 t}{1-t}
\end{gathered}
$$

- Since $(1-t)$ divides the numerator twice, ht $I=2$.
- $e(R)=1+2=3$

Outline

1 Commutative Algebra Background

- Free Resolutions and Betti Numbers
- Hilbert Series and Related Invariants

2 Betti Numbers of Koszul Algebras
3 Koszul Algebras Defined by 4 Quadrics

- The Multiplicity 2 Case
- The Multiplicity 1 Case

4 Further Questions

Koszul Algebras

Let $R_{+}=\bigoplus_{d>0} R_{d}$.
R is a Koszul algebra if the minimal free resolution of $R / R_{+} \cong k$ over R has the form

$$
\cdots \longrightarrow R(-3)^{\beta_{3}} \longrightarrow R(-2)^{\beta_{2}} \longrightarrow R(-1)^{\beta_{1}} \longrightarrow R
$$

Example

Let $R=k[x] /\left(x^{2}\right)$. Then the minimal free resolution of k is:

$$
\cdots \longrightarrow R(-3) \xrightarrow{x} R(-2) \xrightarrow{x} R(-1) \xrightarrow{x} R
$$

So R is Koszul.

Koszul Algebras

- Koszul algebras were introduced by Priddy in 1970 as a way of unifying constructions of resolutions over Steenrod algebras from algebraic topology and universal enveloping algebras of Lie algebras.
- If $R=S / I$ is a Koszul algebra, then I is generated by quadrics (homogeneous polynomials of degree 2).
- There is strong relationship between a Koszul algebra R and its quadratic dual $R^{!}$(although $R^{!}$is non-commutative).

Examples of Koszul Algebras

- Polynomial rings (and exterior algebras)
- Coordinate rings of Grassmannians and suitably general smooth curves
- Many types of toric rings
- All high Veronese subrings of any standard graded algebra
- Quotients by quadratic monomial ideals

Bounds on Betti Numbers

Question (Avramov-Conca-Iyengar '10)

If R is Koszul and I is minimally generated by g elements, does the following inequality hold for all i ?

$$
\beta_{i}^{S}(R) \leq\binom{ g}{i}
$$

In particular, is $\operatorname{pd}_{S} R \leq g$?

Bounds on Betti Numbers

Question (Avramov-Conca-lyengar '10)

If R is Koszul and I is minimally generated by g elements, does the following inequality hold for all i ?

$$
\beta_{i}^{S}(R) \leq\binom{ g}{i}
$$

In particular, is $\operatorname{pd}_{S} R \leq g$?

Motivating philosophy: This is true for quadratic monomial ideals. Reasonable properties of quadratic monomial ideals should hold for general Koszul algebras.

Known Cases

- R is G-quadratic: after a suitable linear change of coordinates $\varphi: S \rightarrow S$, the ideal $\varphi(I)$ has a quadratic Gröbner basis.

If I has a quadratic initial ideal J with g generators, then I is also generated by g quadrics and

$$
\beta_{i}^{S}(R) \leq \beta_{i}^{S}(S / J) \leq\binom{ g}{i}
$$

- R is LG-quadratic: R is a quotient of a G-quadratic algebra A by an A-sequence of linear forms.

A Cautionary Example (Conca '13)

The ring

$$
R=\frac{k[x, y, z, w]}{\left(x y, x w,(x-y) z, z^{2}, x^{2}+z w\right)}
$$

is Koszul but not LG-quadratic.

A Cautionary Example (Conca '13)

The ring

$$
R=\frac{k[x, y, z, w]}{\left(x y, x w,(x-y) z, z^{2}, x^{2}+z w\right)}
$$

is Koszul but not LG-quadratic. Its Betti table is

	0	1	2	3	4
0	1	-	-	-	-
1	-	5	4	-	-
2	-	-	4	6	2

Known Cases

The preceding question has an affirmative answer if:

■ ht $I=g$, so I is a quadratic complete intersection.
■ ht $I=1$, so $I=z J$ for a linear form z and J a linear complete intersection.

- $g=3$ (Boocher-Hassanzadeh-lyengar '17)

Known Cases

The preceding question has an affirmative answer if:
■ ht $I=g$, so I is a quadratic complete intersection.
■ ht $I=1$, so $I=z J$ for a linear form z and J a linear complete intersection.

- $g=3$ (Boocher-Hassanzadeh-lyengar '17)

■ ht $I=g-1$, so I is an almost complete intersection ($\mathrm{M}^{\prime} 18$)

Known Cases

In fact, BHI gave a complete classification of the possible Betti tables of Koszul algebras defined by 3 quadrics. They are:

Koszul Almost Complete Intersections

Theorem (M '18)

Let $R=S / I$ be a Koszul almost complete intersection with I minimally generated by g quadrics for some $g \geq 2$. Then $\beta_{2,3}^{S}(R) \leq 2$, and:
(a) If $\beta_{2,3}^{S}(R)=1$, then $I=\left(x z, z w, q_{3}, \ldots, q_{g}\right)$ for some linear forms x, z, and w and some regular sequence of quadrics q_{3}, \ldots, q_{g} on $S /(x z, z w)$.
(b) If $\beta_{2,3}^{S}(R)=2$, then $I=I_{2}(M)+\left(q_{4}, \ldots, q_{g}\right)$ for some 3×2 matrix of linear forms M with ht $I_{2}(M)=2$ and some regular sequence of quadrics q_{4}, \ldots, q_{g} on $S / I_{2}(M)$.

In particular, R satisfies $\beta_{i}^{S}(R) \leq\binom{ g}{i}$ for all i.

Outline

1 Commutative Algebra Background

- Free Resolutions and Betti Numbers
- Hilbert Series and Related Invariants

2 Betti Numbers of Koszul Algebras
3 Koszul Algebras Defined by 4 Quadrics

- The Multiplicity 2 Case
- The Multiplicity 1 Case

4 Further Questions

Buying Into Edge Ideals

For $g=4$, it is enough to prove the Betti number bound when ht $I=2$.

Based on edge ideals of graphs with 4 edges, we expect R to have one of the Betti tables:

Case	$\beta^{S}(R)$	Graphs
(i)	0 1 2 3 0 1 - - - 1 - 4 4 1	
(ii)	0 1 2 3 4 0 1 - - - - 1 - 4 3 1 - 2 - - 3 3 1	
(iii)	0 1 2 3 0 1 - - - 1 - 4 3 - 2 - - 1 1	$\begin{array}{llrrr} 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{array}$
(iv)	0 1 2 3 4 0 1 - - - - 1 - 4 2 - - 2 - - 4 4 1	$\begin{array}{rrr} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 4 & 5 & 6 \end{array}$

Koszul Algebras Defined by 4 Quadrics

Theorem (Mantero-M '18)

If $R=S / I$ is a Koszul algebra with ht $I=2$ and I minimally generated by $g=4$, then the Betti table of R is one of the four possibilities realized by edge ideals. In particular, $\beta_{i}^{S}(R) \leq\binom{ 4}{i}$ for all i.

Koszul Algebras Defined by 4 Quadrics

Theorem (Mantero-M '18)

If $R=S / I$ is a Koszul algebra with ht $I=2$ and I minimally generated by $g=4$, then the Betti table of R is one of the four possibilities realized by edge ideals. In particular, $\beta_{i}^{S}(R) \leq\binom{ 4}{i}$ for all i.

Even better: We completely describe the structure of the possible defining ideals when $k=\bar{k}$.

A Bound on the Multiplicity

Proposition (Mantero-M '18)

If $R=S / I$ is defined by $g \geq 4$ quadrics and ht $I=2$, then $e(R) \leq 2$.

- In general, $e(R) \leq 3$ as long as I is not a complete intersection (Huneke-Mantero-McCullough-Seceleanu '13).
- A linkage argument shows $e(R)=3$ if and only if the unmixed part of I is $I_{2}(M)$ for some 3×2 matrix of linear forms.

TOOL: Linkage

Two ideals $I, J \subseteq S$ of height c are directly linked if there is a complete intersection ideal $L \subseteq I \cap J$ of height c such that $(L: I)=J$ and $(L: J)=I$, where:

$$
(L: I)=\{f \in S \mid f I \subseteq L\}
$$

- Linked ideals are unmixed, so the unmixed part of I is directly linked to ($L: I$) for any complete intersection $L \subseteq I$ of two quadrics.

■ If ht $I=2$, then $e(S / J)=e(S / L)-e(S / I)=4-3=1$, so J is generated by linear forms.

TOOL: Linkage

Theorem (Avramov-Kustin-Miller '88)

An ideal I is directly linked to a complete intersection of height c if and only if there is a $c \times c$ matrix X and a $1 \times c$ matrix Y such that $I=I_{1}(Y X)+I_{c}(X)$. Such an ideal is called a Northcott ideal.

- Explicitly, if I is linked to a complete intersection $J=\left(f_{1}, \ldots, f_{c}\right)$ by the complete intersection $L=\left(h_{1}, \ldots, h_{c}\right) \subseteq J$, then

$$
Y=\left(f_{1} \cdots f_{c}\right) \quad X=\left(a_{i, j}\right)
$$

where $h_{j}=\sum_{i} a_{i, j} f_{i}$.

- For a height 2 ideal generated by quadrics, we see that $I=I_{2}(M)$ for some 3×2 matrix of linear forms.

Outline

1 Commutative Algebra Background

- Free Resolutions and Betti Numbers
- Hilbert Series and Related Invariants

2 Betti Numbers of Koszul Algebras
3 Koszul Algebras Defined by 4 Quadrics

- The Multiplicity 2 Case
- The Multiplicity 1 Case

4 Further Questions

Unmixed Parts

Recall that the unmixed part I^{unm} of I is the intersection of all primary components J of I with ht $J=$ ht I.

Proposition (Engheta '07)

If $e(R)=\mathrm{ht} I=2$, then I^{unm} has one of the following forms:
(i) $(x, y) \cap(z, w)$ for independent linear forms x, y, z, and w.
(ii) $(x, y)^{2}+(x y+z w)$ for independent linear forms x, y and forms z, w such that $\operatorname{ht}(x, y, z, w)=4$.
(iii) (x, q) for some linear form x and quadric q.

Cases (i) and (ii)

Theorem (Mantero-M '18)

Let $R=S / I$ be a ring defined by $g \geq 4$ quadrics with ht $I=e(R)=2$. Then I has one of the following forms:
$\left(\mathrm{i}_{A}\right)(x, y) \cap(z, w)$ or $(x, y)^{2}+(x z+y w)$ for independent linear forms x, y, z and w, in which case we must have $g=4$.
(i_{B}) $\left(a_{1} x, \ldots, a_{g-1} x, q\right)$ for independent linear forms a_{1}, \ldots, a_{g-1} and some linear form x and quadric $q \in\left(a_{1}, \ldots, a_{g-1}\right) \backslash(x)$.
(ii) $\left(a_{1} x, \ldots, a_{g-1} x, q\right)$ for independent linear forms a_{1}, \ldots, a_{g-1} and some linear form x and quadric q which is a nonzerodivisor modulo $\left(a_{1} x, \ldots, a_{g-1} x\right)$.

Cases (i) and (ii)

Corollary

If $R=S / I$ is a ring defined by $g \geq 4$ quadrics with ht $I=e(R)=2$, then R is $L G$-quadratic so that $\beta_{i}^{S}(R) \leq\binom{ g}{i}$ for all i.

When $g=4$, the Betti table of R is one of:

	0	1	2	3
0	1	-	-	-
1	-	4	4	1

	0	1	2	3	4
0	1	-	-	-	-
1	-	4	3	1	-
2	-	-	3	3	1

Outline

1 Commutative Algebra Background

- Free Resolutions and Betti Numbers
- Hilbert Series and Related Invariants

2 Betti Numbers of Koszul Algebras
3 Koszul Algebras Defined by 4 Quadrics

- The Multiplicity 2 Case
- The Multiplicity 1 Case

4 Further Questions

A Bound on the Projective Dimension

Theorem (Huneke-Mantero-McCullough-Seceleanu '15)

The projective dimension of rings $R=S / I$ defined by 4 quadrics is at most 6 , and this bound is realized by $I=\left(x^{2}, y^{2}, a_{3} x+b_{3} y, a_{4} x+b_{4} y\right)$ with $h t\left(x, y, a_{3}, a_{4}, b_{3}, b_{4}\right)=6$.

A Koszul algebra with ht $I \leq g-2$ has at least 2 linear syzygies on I.

A Bound on the Projective Dimension

Theorem (Huneke-Mantero-McCullough-Seceleanu '15)

The projective dimension of rings $R=S / I$ defined by 4 quadrics is at most 6 , and this bound is realized by $I=\left(x^{2}, y^{2}, a_{3} x+b_{3} y, a_{4} x+b_{4} y\right)$ with $\operatorname{ht}\left(x, y, a_{3}, a_{4}, b_{3}, b_{4}\right)=6$.

A Koszul algebra with ht $I \leq g-2$ has at least 2 linear syzygies on I.

Theorem (Mantero-M '18)

If I is a height 2 ideal minimally generated by four quadrics with at least 2 linear syzygies, then $\operatorname{pd}_{S} R \leq 4$.

Representation by Minors

When ht $I=2$ and $e(R)=1$, the ideal $I=\left(q_{1}, \ldots q_{g}\right)$ is contained in a unique height two minimal prime (x, y) generated by linear forms.

Writing $q_{i}=a_{i} x+b_{i} y$ for some linear forms a_{i} and b_{i}, we say that I is represented by minors by the matrix

$$
M=\left(\begin{array}{cccc}
y & a_{1} & \cdots & a_{g} \\
-x & b_{1} & \cdots & b_{g}
\end{array}\right)
$$

Representation by Minors

Theorem (Huneke-Mantero-McCullough-Seceleanu '13)

After a suitable change of generators for I and (x, y), there are only 5 possible forms for M :
(1) M is 1-generic
(2) $M=\left(\begin{array}{ccccc}y & 0 & a_{2} & \cdots & a_{g} \\ -x & b_{1} & b_{2} & \cdots & b_{g}\end{array}\right)$ where $D=\left(\begin{array}{cccc}y & a_{2} & \cdots & a_{g} \\ -x & b_{2} & \cdots & b_{g}\end{array}\right)$ is 1-generic
(3) $M=\left(\begin{array}{cccccc}y & 0 & 0 & a_{3} & \cdots & a_{g} \\ -x & b_{1} & b_{2} & b_{3} & \cdots & b_{g}\end{array}\right)$
(4) $M=\left(\begin{array}{cccccc}y & 0 & a_{2} & a_{3} & \cdots & a_{g} \\ -x & b_{1} & 0 & b_{3} & \cdots & b_{g}\end{array}\right)$ where $D=\left(\begin{array}{cccc}y & a_{3} & \cdots & a_{g} \\ -x & b_{b} & \cdots & b_{g}\end{array}\right)$ is 1-generic
(5) $M=\left(\begin{array}{cccccc}y & 0 & a_{2} & a_{3} & \cdots & a_{g} \\ -x & b_{1} & 0 & \lambda a_{3} & \cdots & b_{g}\end{array}\right)$ for some $\lambda \in k$

TOOL: 1-Generic Matrices

A $r \times s$ matrix M of linear forms in S is 1-generic if whenever we have $w^{\top} M v=0$ for $w \in k^{r}$ and $v \in k^{s}$, we have either $w=0$ or $v=0$.

■ The exact sequence $0 \rightarrow S /(I: y)(-1) \xrightarrow{y} S / I \rightarrow S /(I, y) \rightarrow 0$ induces an exact sequence:

$$
\operatorname{Tor}_{2}(S /(I: y), k)_{3} \longrightarrow \operatorname{Tor}_{2}^{S}(S / I, k)_{3} \longrightarrow \operatorname{Tor}_{2}^{S}(S /(I, y), k)_{3}
$$

$\zeta \operatorname{Tor}_{1}^{S}(S /(I: y), k)_{2} \longrightarrow 0$

- If M is 1-generic and $k=\bar{k}$, then $(I: y)=I_{2}(M)$ is a prime ideal generated by quadrics of expected height.

TOOL: 1-Generic Matrices

■ In that case, $S / I_{2}(M)$ has an Eagon-Northcott resolution:

	0	1	2	\cdots	g
0	1	-	-	-	-
1	-	$\binom{g+1}{2}$	$2\binom{g+1}{3}$	\cdots	$g\binom{g+1}{g+1}$

- The Betti table of $S /(I, y)=S\left(y, a_{1} x, \ldots, a_{g} x\right)$ is:

	0	1	2	3	\cdots	$g+1$
0	1	1	-	-	-	-
1	-	g	$\binom{g+1}{2}$	$\binom{g+1}{3}$	\cdots	1

So, S / I has no linear syzygies if M is 1 -generic!

Betti Tables of Koszul Algebras Defined by 4 Quadrics

It suffices to find the possible Betti tables when ht $I=2$ and $e(R)=1$.
■ Being Koszul together with the bound on the projective dimension greatly restricts the shape of the Betti table of R :

- $\beta_{i, j}^{S}(R)=0$ for all i and $j>2 i$. (Backelin '88, Kempf '90)
- $\beta_{i, 2 i}^{S}(R)=0$ for $i>\operatorname{ht} I$. (Avramov-Conca-lyengar '10)
- $\beta_{g, g+1}^{S}(R)=0$ if ht $I \geq 2$. (consequence of Koh '99)

Betti Tables of Koszul Algebras Defined by 4 Quadrics

It suffices to find the possible Betti tables when ht $I=2$ and $e(R)=1$.

- There are only 2 possible shapes for the Betti table of R :

	0	1	2	3		0	1	2	3	4
		-	2	3	0	1	-	-	-	-
0	1	-	-	-	1	-	4	a	c	-
1	-	4	a	c	2	-	-	b	d	e
2	-	-	b	d	3	-	-	,	-	f

■ Computing the Hilbert series using that ht $I=2$ and $e(R)=1$ reduces this to an integer programming problem.

Betti Tables of Koszul Algebras Defined by 4 Quadrics

It suffices to deduce the possible Betti tables when $e(R)=1$.

- There are only 2 possible shapes for the Betti table of R :

$$
\begin{array}{c|ccccc|ccccc}
& 0 & 1 & 2 & 3 \\
\hline 0 & 1 & - & - & - \\
1 & - & 4 & 3 & - & & & 0 & 1 & 2 & 3 \\
\hline & 1 & - & - & - & - \\
2 & - & - & 1 & 1
\end{array} \quad \begin{array}{llllll}
2 & - & - & 4 & 4 & 1 \\
3 & - & - & - & - & -
\end{array}
$$

■ Computing the Hilbert series using that ht $I=2$ and $e(R)=1$ reduces this to an integer programming problem.

Case (iii)

Theorem (Mantero-M '19)

The ring $R=S / I$ has Betti table

	0	1	2	3
0	1	-	-	-
1	-	4	3	-
2	-	-	1	1

if and only if $I=\left(x z, y z, a_{3} x+b_{3} y, a_{4} x+b_{4} y\right)$ for some linear forms x, y, z, a_{3}, a_{4}, b_{3}, b_{4} such that $\operatorname{ht}\left(a_{3} x+b_{3} y, a_{4} x+b_{4} y, a_{3} b_{4}-a_{4} b_{3}, z\right)=3$ and $\operatorname{ht}(x, y)=2$. In particular, R is LG-quadratic.

TOOL: Annihilators of Cohomology

The dual of the last differential in the resolution of R yields a presentation:

$$
S(3)^{3} \oplus S(4) \xrightarrow{\varphi_{3}^{*}} S(5) \longrightarrow \operatorname{Ext}_{S}^{3}(R, S) \longrightarrow 0
$$

■ For $\mathfrak{a}_{i}=\operatorname{Ann}_{S} \operatorname{Ext}_{S}^{i}(R, S)$, we have $\prod_{i} \mathfrak{a}_{i} \subseteq I$.
(Eisenbud-Evans ??, Schenzel '79)
■ $\mathfrak{a}_{2}=\operatorname{Ann}_{S} \operatorname{Ext}_{S}^{2}(R, S)=I^{\mathrm{unm}}=(x, y)$.
(Eisenbud-Huneke-Vasconcelos '92)

TOOL: Annihilators of Cohomology

- If z is the linear form in the last differential of the resolution of R, then $z \neq 0$ and $z(x, y) \subseteq \mathfrak{a}_{2} \mathfrak{a}_{3} \subseteq I$.

Theorem (Buchsbaum-Eisenbud Acyclicity Criterion)

A complex of finitely generated free S-modules

$$
0 \longrightarrow F_{s} \xrightarrow{\varphi_{s}} F_{s-1} \longrightarrow \cdots \longrightarrow F_{1} \xrightarrow{\varphi_{1}} F_{0} \longrightarrow 0
$$

is acyclic if and only if ht $I_{r_{i}}\left(\varphi_{i}\right) \geq i$ for all $i \geq 1$, where
$r_{i}=\sum_{j \geq i}(-1)^{j-i} \operatorname{rank} F_{j}$.

Case (iv)

Surprisingly, having the Betti table below does not determine whether R is Koszul!

	0	1	2	3	4
0	1	-	-	-	-
1	-	4	2	-	-
2	-	-	4	4	1

Case (iv)

Theorem (Mantero-M '19)

The ring $R=S / I$ has Betti table (*) if and only if for some linear forms satisfying specific height conditions, I has one of the the following forms:
(a) $\left(x^{2}, b_{3} x, a_{3} x+b_{3} y, a_{4} x+b_{4} y\right)$
(b) $\left(x y, a_{2} x, b_{3} y, a_{4} x+b_{4} y\right)$
(c) $\left(b_{3} x, b_{4} x, a_{3} x+b_{3} y, a_{4} x+b_{4} y\right)$
(d) $\left(a_{1} x, a_{2} x, b_{3} y, b_{4} y\right)$ with $\left(a_{1} x, a_{2} x\right)$ and $\left(b_{3} y, b_{4} y\right)$ transversal

TOOL: Buchsbaum-Rim Complexes

We can view the four quadric generators of $I=\left(q_{1}, q_{2}, q_{3}, q_{4}\right)$ as syzygies on its 4×2 matrix of linear syzgies ℓ :

$$
\left(\begin{array}{llll}
q_{1} & q_{2} & q_{3} & q_{4}
\end{array}\right) \ell=0 \quad \Longrightarrow \quad \ell^{\top}\left(\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3} \\
q_{4}
\end{array}\right)=0
$$

If I has Betti table $(*)$, then ℓ cannot be 1 -generic!

TOOL: Buchsbaum-Rim Complexes

If ℓ were 1-generic:
■ $I_{2}(\ell)$ is a prime ideal generated by quadrics of expected height.

TOOL: Buchsbaum-Rim Complexes

If ℓ were 1-generic:
■ $I_{2}(\ell)$ is a prime ideal generated by quadrics of expected height.

- Coker ℓ^{\top} is resolved by a Buchsbaum-Rim complex:

$$
\begin{aligned}
S(-4)^{2} & \xrightarrow{-\ell} S(-3)^{4} \xrightarrow{Q} S(-1)^{4} \xrightarrow{\ell^{\top}} S^{2} \\
Q & =\left(\begin{array}{cccc}
0 & -\Delta_{3,4} & \Delta_{2,4} & -\Delta_{2,3} \\
\Delta_{3,4} & 0 & -\Delta_{1,4} & \Delta_{1,3} \\
-\Delta_{2,4} & \Delta_{1,4} & 0 & -\Delta_{1,2} \\
\Delta_{2,3} & -\Delta_{1,3} & \Delta_{1,2} & 0
\end{array}\right)
\end{aligned}
$$

where $\Delta_{i, j}$ is the minor involving rows i and j of ℓ.

TOOL: Buchsbaum-Rim Complexes

If ℓ were 1 -generic:

- This shows that $I \subseteq I_{2}(\ell)$.
- Of the representations by minors of height 2 ideals of multiplicity 1 described by Huneke-Mantero-McCullough-Seceleanu, we know I must contain a reducible quadric if it has 2 independent linear syzygies.

TOOL: Buchsbaum-Rim Complexes

If ℓ were 1 -generic:

- This shows that $I \subseteq I_{2}(\ell)$.
- Of the representations by minors of height 2 ideals of multiplicity 1 described by Huneke-Mantero-McCullough-Seceleanu, we know I must contain a reducible quadric if it has 2 independent linear syzygies.

So, ℓ is not 1 -generic. Considering how many other zeros can appear in ℓ gives the 4 possible forms of the ideal.

Case (iv)

Theorem (Mantero-M '19)

The ring $R=S / I$ has Betti table (*) if and only if for some linear forms satisfying specific height conditions, I has one of the the following forms:
(a) $\left(x^{2}, b_{3} x, a_{3} x+b_{3} y, a_{4} x+b_{4} y\right)$
(b) $\left(x y, a_{2} x, b_{3} y, a_{4} x+b_{4} y\right)$
(c) $\left(b_{3} x, b_{4} x, a_{3} x+b_{3} y, a_{4} x+b_{4} y\right)$
(d) $\left(a_{1} x, a_{2} x, b_{3} y, b_{4} y\right)$ with $\left(a_{1} x, a_{2} x\right)$ and $\left(b_{3} y, b_{4} y\right)$ transversal

Case (iv)

Theorem (Mantero-M '19)

The ring $R=S / I$ has Betti table (*) if and only if for some linear forms satisfying specific height conditions, I has one of the the following forms:
(a) $\left(x^{2}, b_{3} x, a_{3} x+b_{3} y, a_{4} x+b_{4} y\right)$
(b) $\left(x y, a_{2} x, b_{3} y, a_{4} x+b_{4} y\right)$
(c) $\left(b_{3} x, b_{4} x, a_{3} x+b_{3} y, a_{4} x+b_{4} y\right)$
(d) $\left(a_{1} x, a_{2} x, b_{3} y, b_{4} y\right)$ with $\left(a_{1} x, a_{2} x\right)$ and $\left(b_{3} y, b_{4} y\right)$ transversal

Detecting Non-Koszulness

Theorem (M '18, Avramov-Conca-lyengar '10)

If R is Koszul, then $\operatorname{Syz}_{1}^{S}(I)$ is generated by linear and Koszul syzygies.

For example, if $I=\left(x y, a_{2} x, b_{3} y, a_{4} x+b_{4} y\right)$ and we set $q=a_{4} x+b_{4} y$:

Detecting Non-Koszulness

Theorem (M '18, Avramov-Conca-lyengar '10)

If R is Koszul, then $\operatorname{Syz}_{1}^{S}(I)$ is generated by linear and Koszul syzygies.

For example, if $I=\left(x y, a_{2} x, b_{3} y, a_{4} x+b_{4} y\right)$ and we set $q=a_{4} x+b_{4} y$:

$$
\operatorname{Syz}_{1}^{S}(I)=\operatorname{Im}\left(\begin{array}{cccccc}
-a_{2} & -b_{3} & q & 0 & 0 & 0 \\
y & 0 & 0 & q & 0 & a_{4} b_{3} \\
0 & x & 0 & 0 & q & a_{2} b_{4} \\
0 & 0 & -x y & -a_{2} x & -b_{3} y & -a_{2} b_{3}
\end{array}\right)
$$

where the last column is not generated by the linear and Koszul syzygies.

Detecting Non-Koszulness

Theorem (M '18, Avramov-Conca-lyengar '10)

If R is Koszul, then $\operatorname{Syz}_{1}^{S}(I)$ is generated by linear and Koszul syzygies.

For example, if $I=\left(x y, a_{2} x, b_{3} y, a_{4} x+b_{4} y\right)$ and we set $q=a_{4} x+b_{4} y$:

$$
\operatorname{Syz}_{1}^{S}(I)=\operatorname{Im}\left(\begin{array}{cccccc}
-a_{2} & -b_{3} & q & 0 & 0 & 0 \\
y & 0 & 0 & q & 0 & a_{4} b_{3} \\
0 & x & 0 & 0 & q & a_{2} b_{4} \\
0 & 0 & -x y & -a_{2} x & -b_{3} y & -a_{2} b_{3}
\end{array}\right)
$$

where the last column is not generated by the linear and Koszul syzygies.
Sadly, this argument fails if $I=\left(b_{3} x, b_{4} x, a_{3} x+b_{3} y, a_{4} x+b_{4} y\right)$.

Another Cautionary Example (Roos '93)

For each integer $n \geq 2$, the resolution of \mathbb{Q} over the ring

$$
R_{n}=\frac{\mathbb{Q}[x, y, z, u, v, w]}{(x, y)^{2}+(v, w)^{2}+L+(z, u)^{2}}
$$

where

$$
L=((x+n w) z-w u, w z+(x+(n-2) w) u, y z, v u)
$$

is linear for n steps but fails to be linear at the $(n+1)$-th step.

Passing Koszulness Around

Proposition (Conca-De Negri-Rossi '13)

Let S be a standard graded k-algebra and R be a quotient ring of S.
(a) If S is Koszul and $\operatorname{reg}_{S}(R) \leq 1$, then R is Koszul.
(b) If R is Koszul and $\operatorname{reg}_{S}(R)$ is finite, then S is Koszul.

Here:

$$
\operatorname{reg}_{S}(R)=\sup \left\{j \mid \beta_{i, i+j}^{S}(R) \neq 0\right\}
$$

In particular, Koszul-ness passes to and from quotients by a regular sequence of quadrics.

TOOL: Symmetric Algebras

It is enough to check the ring below is not Koszul.

$$
R=\frac{k[x, y, a, b]}{\left(x^{2}-y^{2}, x y, b x, a x-b y\right)}
$$

Given a module M with t generators over a ring R^{\prime}, a presentation of the symmetric algebra $\operatorname{Sym}_{R^{\prime}}(M)$ is given by:

$$
\operatorname{Sym}_{R^{\prime}}(M)=\frac{R^{\prime}\left[u_{1}, \ldots, u_{t}\right]}{\left(\sum_{i} f_{i} u_{i} \mid\left(f_{1}, \ldots, f_{t}\right) \in \operatorname{Syz}_{1}^{R^{\prime}}(M)\right)}
$$

TOOL: Symmetric Algebras

It is enough to check the ring below is not Koszul.

$$
R=\frac{k[x, y, a, b]}{\left(x^{2}-y^{2}, x y, b x, a x-b y\right)} \cong \operatorname{Sym}_{R^{\prime}}(M)
$$

where $R^{\prime}=k[x, y] /\left(x^{2}-y^{2}, x y\right)$ and M has a periodic resolution

$$
\cdots \longrightarrow R^{\prime}(-2)^{2} \xrightarrow{\left(\begin{array}{ll}
y & 0 \\
x & y
\end{array}\right)} R^{\prime}(-1)^{2} \xrightarrow{\left(\begin{array}{cc}
x & 0 \\
-y & x
\end{array}\right)} R^{\prime 2} \longrightarrow M \longrightarrow 0
$$

TOOL: Symmetric Algebras

Theorem (Herzog-Hibi-Ohsugi '00)

Suppose $\varphi: R \rightarrow R^{\prime}$ is an algebra retract of standard graded k-algebras. Then R is Koszul if and only if R^{\prime} is Koszul and R^{\prime} has a linear resolution as an R-module (via φ).

TOOL: Symmetric Algebras

Theorem (Herzog-Hibi-Ohsugi '00)

Suppose $\varphi: R \rightarrow R^{\prime}$ is an algebra retract of standard graded k-algebras. Then R is Koszul if and only if R^{\prime} is Koszul and R^{\prime} has a linear resolution as an R-module (via φ).

- This reduces the number of syzygies we need to compute from about 340 for k to about 80 for R^{\prime}.
- The resolutions of R^{\prime} and k over R fail to be linear 6 steps back if $\operatorname{char}(k) \neq 2$ and 5 steps back if $\operatorname{char}(k)=2$.

Consequences of the Structure Theorem

Theorem (Mantero-M '19)

All Koszul algebras defined by $g \leq 4$ quadrics are LG-quadratic.
■ Conca's example of a Koszul algebra that is not LG-quadratic is minimal in terms of height, multiplicity, and number of generators.

- We can explicitly describe the defining ideal of any Koszul algebra defined by $g \leq 4$ quadrics (for $k=\bar{k}$).
- We are able to determine when such Koszul algebras have the Backelin-Roos and absolutely Koszul properties.

Outline

1 Commutative Algebra Background

- Free Resolutions and Betti Numbers
- Hilbert Series and Related Invariants

2 Betti Numbers of Koszul Algebras
3 Koszul Algebras Defined by 4 Quadrics

- The Multiplicity 2 Case
- The Multiplicity 1 Case

4 Further Questions

Further Questions

1. What about Koszul algebras defined by $g \geq 5$ quadrics?

■ What do Koszul algebras $R=S / I$ defined by $g=5$ quadrics with ht $I=2$ and $e(R)=1$ look like?
2. Is there a method for producing other examples of Koszul algebras which are not LG-quadratic?
3. Can we remove the $k=\bar{k}$ assumption from the structure theorem?

■ Is there a structure theorem for nondegenerate prime ideals P with ht $I=e(S / P)=2$?
■ Is there some ring which is not LG-quadratic but becomes LG-quadratic after field extension?

Further Questions

4. What other nice properties of edge ideals carry over to general Koszul algebras?

■ Is reg $R \leq \mathrm{ht} I$? (It's known that $\operatorname{reg} R \leq \mathrm{pd}_{S} R$.)
5. Can we characterize when $\operatorname{Sym}_{R}(M)$ is Koszul?

