The Structure of Koszul Algebras Defined by Four Quadrics

Matthew Mastroeni (joint with Paolo Mantero)

Oklahoma State University

Mastroeni

Background	Koszul Algebras	4 Quadrics	Further Questions
00000000 0000		0000 0000000000000000000000000000	

Notation

We'll assume the following notation unless otherwise stated:

 \blacksquare k a field

•
$$S = k[x_1, \ldots, x_n]$$
 a polynomial ring over k

 $\blacksquare \ I \subseteq S \text{ an ideal}$

$$\blacksquare R = S/I$$

Background

- 1 Commutative Algebra Background
 - Free Resolutions and Betti Numbers
 - Hilbert Series and Related Invariants
- 2 Betti Numbers of Koszul Algebras
- **3** Koszul Algebras Defined by 4 Quadrics
 - The Multiplicity 2 Case
 - The Multiplicity 1 Case

Background

- 1 Commutative Algebra Background
 - Free Resolutions and Betti Numbers
 - Hilbert Series and Related Invariants
- 2 Betti Numbers of Koszul Algebras
- **3** Koszul Algebras Defined by 4 Quadrics
 - The Multiplicity 2 Case
 - The Multiplicity 1 Case

Background	Koszul Algebras	4 Quadrics	Further Questions
•••••• •••••		0000 0000000000000000000000000000	
Free Resolutions and Betti Nu	mbers		

- Commutative Algebra Background
 Free Resolutions and Betti Numbers
 Hilbert Series and Related Invariants
 - Thibert Series and Related Invariant
- 2 Betti Numbers of Koszul Algebras
- 3 Koszul Algebras Defined by 4 Quadrics
 - The Multiplicity 2 Case
 - The Multiplicity 1 Case

Background	Koszul Algebras	4 Quadrics	Further Questions
0 000000 0000		0000 000000000000000000000000000000000	
Free Resolutions and Betti Nu	mbers		

Edge Ideals

To every (simple) graph G, we can associate a square-free quadratic monomial ideal. If G has vertex set $\{v_1, \ldots, v_n\}$, the **edge ideal** of G is the ideal of $S = k[x_1, \ldots, x_n]$ given by:

$$I(G) = (x_i x_j \mid v_i v_j \text{ is an edge of } G)$$

Example

The edge ideal of the graph below is $I = (xy, xz, yz) \subseteq S = k[x, y, z]$.

Background	Koszul Algebras	4 Quadrics	Further Questions
0000000 0000		0000 000000000000000000000000000000000	
Free Resolutions and Betti Nu	Imbers		

The Taylor Resolution

If $I=(m_1,\ldots,m_g)$ is a monomial ideal, then for each $J\subseteq\{1,\ldots,g\}$ we set

 $m_J = \operatorname{lcm}(m_j \mid j \in J)$

The **Taylor resolution** of R is the free resolution F_{\bullet} given by

$$F_i = \bigoplus_{|J|=i} Se_J \qquad \partial(e_J) = \sum_{p=1}^i (-1)^{p+1} \frac{m_J}{m_{J \setminus \{j_p\}}} e_{J \setminus \{j_p\}}$$

where $j_1 < j_2 < \cdots < j_i$.

Background	Koszul Algebras	4 Quadrics	Further Questions
0000000 0000		0000 000000000000000000000000000000000	
Free Resolutions and Betti Nu	mbers		

For I = (xy, xz, yz) in S = k[x, y, z], the Taylor resolution of R is:

Background	Koszul Algebras	4 Quadrics	Further Questions
00000000 0000		0000 000000000000000000000000000	
Free Resolutions and	Betti Numbers		

Minimal Free Resolutions

When the ideal I is graded, R=S/I has a unique up to isomorphism ${\rm minimal}$ free resolution:

- The matrices in the resolution have homogeneous entries of positive degree.
- We keep track of the degrees of the entries by grading the free modules in the resolution.
- $S(-j)^r$ denotes the free module S^r with basis vectors in degree j.

Background	Koszul Algebras	4 Quadrics	Further Questions
00000000 0000		0000 000000000000000000000000000000000	
Free Resolutions and Betti Nu	mbers		

Graded Betti Numbers

For a quotient ring R = S/I with minimal free resolution

$$0 \longrightarrow F_p \xrightarrow{\varphi_p} F_{p-1} \longrightarrow \cdots \longrightarrow F_1 \xrightarrow{\varphi_1} F_0$$

we can write each free module $F_i = \bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{i,j}}$ with $\beta_{i,j} \ge 0$.

The ranks $\beta_{i,j} = \beta_{i,j}^S(R)$ are called the **graded Betti numbers** of R over S.

This information is often displayed in a table, called the **Betti table** of R, whose entry in the *i*-th column and *j*-th row is $\beta_{i,i+j}^{S}(R)$.

Background	Koszul Algebras	4 Quadrics	Further Questions
00000000 0000		0000 000000000000000000000000000	
Free Resolutions a	nd Betti Numbers		

Unfortunately, the Taylor resolution of R = k[x, y, z]/(xy, xz, yz) is not minimal:

$$S(-3) \xrightarrow{\begin{pmatrix} 1\\-1\\1 \end{pmatrix}} S(-3)^3 \xrightarrow{\begin{pmatrix} 0&-z&-z\\-y&0&y\\x&x&0 \end{pmatrix}} S(-2)^3 \xrightarrow{(xy\ xz\ yz)} S(-2)^3$$

Background	Koszul Algebras	4 Quadrics	Further Questions
00000000 0000		0000 000000000000000000000000000	
Free Resolutions an	d Betti Numbers		

The minimal free resolution of R = k[x, y, z]/(xy, xz, yz) is:

$$0 \longrightarrow S(-3)^2 \xrightarrow{\begin{pmatrix} 0 & -z \\ -y & 0 \\ x & x \end{pmatrix}} S(-2)^3 \xrightarrow{(xy \ xz \ yz)} S$$
$$\xrightarrow{\begin{vmatrix} 0 & 1 & 2 \\ 0 & 1 & - & - \\ 1 & - & 3 & 2 \end{vmatrix}}$$

Background	Koszul Algebras	4 Quadrics	Further Questions
0000000 0000		0000 000000000000000000000000000000000	
Free Resolutions and Betti Nu	mbers		

The minimal free resolution of R = k[x, y, z]/(xy, xz, yz) is:

$$0 \longrightarrow S(-3)^2 \xrightarrow{\begin{pmatrix} 0 & -z \\ -y & 0 \\ x & x \end{pmatrix}} S(-2)^3 \xrightarrow{(xy \ xz \ yz)} S$$

	0	1	2
0	1	_	_
1	_	3	2

The 2-minors of the matrix of syzygies recover the generators of I. Such resolutions are called **Hilbert-Burch resolutions**.

Background Koszul Algebras	4 Quadrics	Further Questions
0000	000000000000000000000000000000000000000	
Hilbert Series and Related Invariants		

Free Resolutions and Betti Numbers

Hilbert Series and Related Invariants

2 Betti Numbers of Koszul Algebras

3 Koszul Algebras Defined by 4 Quadrics

The Multiplicity 2 Case

The Multiplicity 1 Case

Hilbert Functions

The Hilbert function of R is $HF(R, d) = \dim_k R_d$.

• We can compute the Hilbert function of *R* from its graded Betti numbers over *S*:

$$\cdots \longrightarrow F_2 \longrightarrow F_1 \longrightarrow F_0 \longrightarrow R \longrightarrow 0$$

$$\begin{split} \mathrm{HF}(R,d) &= \sum_{i,j} (-1)^i \dim_k [F_i]_d \\ &= \sum_{i,j} (-1)^i \beta_{i,j}^S(R) \binom{n+d-j-1}{n-1} \end{split}$$

Background	Koszul Algebras	4 Quadrics	Further Questions		
0000000		0000			
		000000000000000000000000000000000000000			
Hilbert Series and Kelated Invariants					

Hilbert Series

• The generating series $H_R(t) = \sum_d HF(R, d)t^d \in \mathbb{Z}[[t]]$ is a rational function:

$$\mathbf{H}_R(t) = \frac{h_R(t)}{(1-t)^{n-c}}$$

for a unique polynomial $h_R(t) \in \mathbb{Z}[t]$ with $h_R(1) > 0$ and positive integer c.

Background	Koszul Algebras	4 Quadrics	Further Questions		
0000000		0000			
		000000000000000000000000000000000000000			
Hilbert Series and Related Invariants					

Hilbert Series

• The generating series $H_R(t) = \sum_d HF(R, d)t^d \in \mathbb{Z}[[t]]$ is a rational function:

$$\mathbf{H}_R(t) = \frac{h_R(t)}{(1-t)^{n-c}}$$

for a unique polynomial $h_R(t) \in \mathbb{Z}[t]$ with $h_R(1) > 0$ and positive integer c.

- We call ht I = c the height (or codimension) of I.
- We call $e(R) = h_R(1)$ the **multiplicity** (or **degree**) of *I*.

0000000 0000 000 000000000000000000000	Background	Koszul Algebras	4 Quadrics	Further Questions
0000 000000000000000000000000000000000				
Hilbert Series and Related Invariants	0000		000000000000000000000000000000000000000	
Thister Series and Related Invariants				

If $I = (xy, xz, yz) \subseteq S = k[x, y, z]$, the Hilbert series of R = S/I is:

	0	1	2
0	1	_	_
1	—	3	2

$$\mathbf{H}_{R}(t) = \frac{1}{(1-t)^{3}} - \frac{3t^{2}}{(1-t)^{3}} + \frac{2t^{3}}{(1-t)^{3}}$$

Background	Koszul Algebras	4 Quadrics	Further Questions
0000000		0000	
0000		000000000000000000000000000000000000000	
Hilbert Series and Related Inva	ariants		

If $I = (xy, xz, yz) \subseteq S = k[x, y, z]$, the Hilbert series of R = S/I is:

	0	1	2
0	1	_	_
1	-	3	2

$$\mathbf{H}_{R}(t) = \frac{1}{(1-t)^{3}} - \frac{3t^{2}}{(1-t)^{3}} + \frac{2t^{3}}{(1-t)^{3}} = \frac{1+2t}{1-t}$$

Since (1-t) divides the numerator twice, ht I = 2.

• e(R) = 1 + 2 = 3

Background

Commutative Algebra Background
 Free Resolutions and Betti Numbers
 Hilbert Series and Related Invariants

2 Betti Numbers of Koszul Algebras

- 3 Koszul Algebras Defined by 4 Quadrics
 - The Multiplicity 2 Case
 - The Multiplicity 1 Case

Background	Koszul Algebras	4 Quadrics	Further Questions
00000000 0000		0000 000000000000000000000000000	

Koszul Algebras

Let $R_+ = \bigoplus_{d>0} R_d$.

R is a Koszul algebra if the minimal free resolution of $R/R_+\cong k$ over R has the form

$$\cdots \longrightarrow R(-3)^{\beta_3} \longrightarrow R(-2)^{\beta_2} \longrightarrow R(-1)^{\beta_1} \longrightarrow R$$

Example

Let $R = k[x]/(x^2)$. Then the minimal free resolution of k is:

$$\cdots \longrightarrow R(-3) \xrightarrow{x} R(-2) \xrightarrow{x} R(-1) \xrightarrow{x} R$$

So R is Koszul.

Background	Koszul Algebras	4 Quadrics	Further Questions
0000000		0000	
0000		000000000000000000000000000000000000000	

Koszul Algebras

- Koszul algebras were introduced by Priddy in 1970 as a way of unifying constructions of resolutions over Steenrod algebras from algebraic topology and universal enveloping algebras of Lie algebras.
- If R = S/I is a Koszul algebra, then I is generated by quadrics (homogeneous polynomials of degree 2).
- There is strong relationship between a Koszul algebra R and its quadratic dual R! (although R! is non-commutative).

kground	Koszul Algebras	4 Quadrics	
00000		0000	

Examples of Koszul Algebras

- Polynomial rings (and exterior algebras)
- ► Coordinate rings of Grassmannians and suitably general smooth curves
- Many types of toric rings
- > All high Veronese subrings of any standard graded algebra
- Quotients by quadratic monomial ideals

Bac

Background
0000

Bounds on Betti Numbers

Question (Avramov-Conca-lyengar '10)

If R is Koszul and I is minimally generated by g elements, does the following inequality hold for all i?

$$\beta_i^S(R) \le \binom{g}{i}$$

In particular, is $pd_S R \leq g$?

Background
0000

Bounds on Betti Numbers

Question (Avramov-Conca-Iyengar '10)

If R is Koszul and I is minimally generated by g elements, does the following inequality hold for all i?

$$\beta_i^S(R) \le \binom{g}{i}$$

In particular, is $pd_S R \leq g$?

Motivating philosophy: This is true for quadratic monomial ideals. Reasonable properties of quadratic monomial ideals should hold for general Koszul algebras.

Background	Koszul Algebras	4 Quadrics	Further Questions
0000000		0000 000000000000000000000000000	

• R is **G-quadratic**: after a suitable linear change of coordinates $\varphi: S \to S$, the ideal $\varphi(I)$ has a quadratic Gröbner basis.

If I has a quadratic initial ideal J with g generators, then I is also generated by g quadrics and

$$\beta_i^S(R) \le \beta_i^S(S/J) \le \binom{g}{i}$$

R is LG-quadratic: *R* is a quotient of a G-quadratic algebra *A* by an *A*-sequence of linear forms.

Background	Koszul Algebras	4 Quadrics
0000000		0000

A Cautionary Example (Conca '13)

The ring

$$R = \frac{k[x,y,z,w]}{(xy,xw,(x-y)z,z^2,x^2+zw)}$$

is Koszul but not LG-quadratic.

Background	Koszul Algebras	4 Quadrics
0000000		0000

A Cautionary Example (Conca '13)

The ring

$$R = \frac{k[x,y,z,w]}{(xy,xw,(x-y)z,z^2,x^2+zw)}$$

is Koszul but not LG-quadratic. Its Betti table is

	0	1	2	3	4
0	1	_	_	_	_
1	-	5	4	_	_
2	-	_	4	6	2

Background	Koszul Algebras	4 Quadrics	Further Questions
0000000		0000	

The preceding question has an affirmative answer if:

- $\operatorname{ht} I = g$, so I is a quadratic complete intersection.
- ht I = 1, so I = zJ for a linear form z and J a linear complete intersection.
- g = 3 (Boocher-Hassanzadeh-Iyengar '17)

Background	Koszul Algebras	4 Quadrics	Further Questions
0000000		0000	

The preceding question has an affirmative answer if:

- $\operatorname{ht} I = g$, so I is a quadratic complete intersection.
- $\operatorname{ht} I = 1$, so I = zJ for a linear form z and J a linear complete intersection.
- g = 3 (Boocher-Hassanzadeh-Iyengar '17)
- $\operatorname{ht} I = g 1$, so I is an almost complete intersection (M '18)

Background	Koszul Algebras	4 Quadrics	Further Questions
0000000 0000		0000 000000000000000000000000000000000	

In fact, BHI gave a complete classification of the possible Betti tables of Koszul algebras defined by 3 quadrics. They are:

Koszul Almost Complete Intersections

Theorem (M '18)

Let R = S/I be a Koszul almost complete intersection with I minimally generated by g quadrics for some $g \ge 2$. Then $\beta_{2,3}^S(R) \le 2$, and:

- (a) If $\beta_{2,3}^S(R) = 1$, then $I = (xz, zw, q_3, \dots, q_g)$ for some linear forms x, z, and w and some regular sequence of quadrics q_3, \dots, q_g on S/(xz, zw).
- (b) If β^S_{2,3}(R) = 2, then I = I₂(M) + (q₄,...,q_g) for some 3 × 2 matrix of linear forms M with ht I₂(M) = 2 and some regular sequence of quadrics q₄,...,q_g on S/I₂(M).

In particular, R satisfies $\beta_i^S(R) \leq {g \choose i}$ for all *i*.

Background

Outline

- Commutative Algebra Background
 Free Resolutions and Betti Numbers
 - Hilbert Series and Related Invariants
- 2 Betti Numbers of Koszul Algebras
- 3 Koszul Algebras Defined by 4 Quadrics
 - The Multiplicity 2 Case
 - The Multiplicity 1 Case

Buying Into Edge Ideals

For g = 4, it is enough to prove the Betti number bound when ht I = 2.

Based on edge ideals of graphs with 4 edges, we expect Rto have one of the Betti tables:

Case	$\beta^{S}(R)$	Graphs
(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1 \bigoplus_{2 \bigoplus_{i=1}^{n} 3} 4 \xrightarrow{1 \bigoplus_{i=1}^{n} 3} 4 \xrightarrow{1 \bigoplus_{i=1}^{n} 3} 4 \xrightarrow{5} 2 \bigoplus_{i=1}^{n} 2 \bigoplus_{i=1}^{n}$
(ii)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c}1 \\ \bullet \\ 2 \\ \bullet \end{array} \begin{array}{c}3 \\ \bullet \\ $
(iii)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(iv)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Koszul Algebras Defined by 4 Quadrics

Theorem (Mantero-M '18)

If R = S/I is a Koszul algebra with $\operatorname{ht} I = 2$ and I minimally generated by g = 4, then the Betti table of R is one of the four possibilities realized by edge ideals. In particular, $\beta_i^S(R) \leq {4 \choose i}$ for all i.

Koszul Algebras Defined by 4 Quadrics

Theorem (Mantero-M '18)

If R = S/I is a Koszul algebra with $\operatorname{ht} I = 2$ and I minimally generated by g = 4, then the Betti table of R is one of the four possibilities realized by edge ideals. In particular, $\beta_i^S(R) \leq {4 \choose i}$ for all i.

Even better: We completely describe the structure of the possible defining ideals when $k = \overline{k}$.
Koszul	lgel	bras

A Bound on the Multiplicity

Proposition (Mantero-M '18)

If R = S/I is defined by $g \ge 4$ quadrics and ht I = 2, then $e(R) \le 2$.

- In general, e(R) ≤ 3 as long as I is not a complete intersection (Huneke-Mantero-McCullough-Seceleanu '13).
- A linkage argument shows e(R) = 3 if and only if the unmixed part of I is $I_2(M)$ for some 3×2 matrix of linear forms.

Background

TOOL: Linkage

Background

Two ideals $I, J \subseteq S$ of height c are **directly linked** if there is a complete intersection ideal $L \subseteq I \cap J$ of height c such that (L : I) = J and (L : J) = I, where:

$$(L:I) = \{f \in S \mid fI \subseteq L\}$$

• Linked ideals are unmixed, so the unmixed part of I is directly linked to (L:I) for any complete intersection $L \subseteq I$ of two quadrics.

If ht I = 2, then e(S/J) = e(S/L) - e(S/I) = 4 - 3 = 1, so J is generated by linear forms.

TOOL: Linkage

Background

Theorem (Avramov-Kustin-Miller '88)

An ideal I is directly linked to a complete intersection of height c if and only if there is a $c \times c$ matrix X and a $1 \times c$ matrix Y such that $I = I_1(YX) + I_c(X)$. Such an ideal is called a **Northcott ideal**.

Explicitly, if I is linked to a complete intersection $J = (f_1, \ldots, f_c)$ by the complete intersection $L = (h_1, \ldots, h_c) \subseteq J$, then

$$Y = (f_1 \cdots f_c) \qquad X = (a_{i,j})$$

where $h_j = \sum_i a_{i,j} f_i$.

For a height 2 ideal generated by quadrics, we see that $I = I_2(M)$ for some 3×2 matrix of linear forms.

Outline

- Hilbert Series and Related Invariants
- 2 Betti Numbers of Koszul Algebras
- **3** Koszul Algebras Defined by 4 Quadrics
 - The Multiplicity 2 Case
 - The Multiplicity 1 Case

4 Further Questions

Background	Koszul Algebras	4 Quadrics	Further Question
		0000	
0000		000000000000000000000000000000000000000	
The Multiplicity 2 Case			

Unmixed Parts

Recall that the **unmixed part** I^{unm} of I is the intersection of all primary components J of I with $\operatorname{ht} J = \operatorname{ht} I$.

Proposition (Engheta '07)

If e(R) = ht I = 2, then I^{unm} has one of the following forms:

- (i) $(x, y) \cap (z, w)$ for independent linear forms x, y, z, and w.
- (ii) $(x, y)^2 + (xy + zw)$ for independent linear forms x, y and forms z, w such that ht(x, y, z, w) = 4.

(iii) (x,q) for some linear form x and quadric q.

Background	Koszul Algebras	4 Quadrics	Further Questions
		0000	
0000		000000000000000000000000000000000000000	
The Multiplicity 2 Case			

Cases (i) and (ii)

Theorem (Mantero-M '18)

Let R = S/I be a ring defined by $g \ge 4$ quadrics with ht I = e(R) = 2. Then I has one of the following forms:

- (i_A) $(x, y) \cap (z, w)$ or $(x, y)^2 + (xz + yw)$ for independent linear forms x, y, zand w, in which case we must have g = 4.
- (i_B) $(a_1x, \ldots, a_{g-1}x, q)$ for independent linear forms a_1, \ldots, a_{g-1} and some linear form x and quadric $q \in (a_1, \ldots, a_{g-1}) \setminus (x)$.
 - (ii) (a₁x,..., a_{g-1}x, q) for independent linear forms a₁,..., a_{g-1} and some linear form x and quadric q which is a nonzerodivisor modulo (a₁x,..., a_{g-1}x).

Background	Koszul Algebras	4 Quadrics	Further Questions
0000000		0000	
The Multiplicity 2 Case			
c (1)	1 (11)		

Cases (i) and (ii)

Corollary

If R = S/I is a ring defined by $g \ge 4$ quadrics with $\operatorname{ht} I = e(R) = 2$, then R is LG-quadratic so that $\beta_i^S(R) \le {g \choose i}$ for all i.

When g = 4, the Betti table of R is one of:

Т

Background	Koszul Algebras	4 Quadrics	Further Questions
0000		000000000000000000000000000000000000000	
Multiplicity 1			

Outline

Free Resolutions and Betti Numbers

Hilbert Series and Related Invariants

2 Betti Numbers of Koszul Algebras

3 Koszul Algebras Defined by 4 Quadrics

- The Multiplicity 2 Case
- The Multiplicity 1 Case

4 Further Questions

Background	Koszul Algebras	4 Quadrics	Further Questions
0000		000000000000000000000000000000000000000	
Multiplicity 1			

A Bound on the Projective Dimension

Theorem (Huneke-Mantero-McCullough-Seceleanu '15)

The projective dimension of rings R = S/I defined by 4 quadrics is at most 6, and this bound is realized by $I = (x^2, y^2, a_3x + b_3y, a_4x + b_4y)$ with $ht(x, y, a_3, a_4, b_3, b_4) = 6$.

A Koszul algebra with $ht I \leq g - 2$ has at least 2 linear syzygies on I.

Background	Koszul Algebras	4 Quadrics	Further Questions
		000000000000000000000000000000000000000	
Multiplicity 1			

A Bound on the Projective Dimension

Theorem (Huneke-Mantero-McCullough-Seceleanu '15)

The projective dimension of rings R = S/I defined by 4 quadrics is at most 6, and this bound is realized by $I = (x^2, y^2, a_3x + b_3y, a_4x + b_4y)$ with $ht(x, y, a_3, a_4, b_3, b_4) = 6$.

A Koszul algebra with $\operatorname{ht} I \leq g-2$ has at least 2 linear syzygies on I.

Theorem (Mantero-M '18)

If I is a height 2 ideal minimally generated by four quadrics with at least 2 linear syzygies, then $pd_S R \le 4$.

Background	Koszul Algebras	4 Quadrics	Further Questions
00000000		0000 000000000000000000000000000000000	
Multiplicity 1			

Representation by Minors

When ht I = 2 and e(R) = 1, the ideal $I = (q_1, \dots, q_g)$ is contained in a unique height two minimal prime (x, y) generated by linear forms.

Writing $q_i = a_i x + b_i y$ for some linear forms a_i and b_i , we say that I is **represented by minors** by the matrix

$$M = \begin{pmatrix} y & a_1 & \cdots & a_g \\ -x & b_1 & \cdots & b_g \end{pmatrix}$$

Background	Koszul Algebras	4 Quadrics	Further Questions
0000000		0000	
		000000000000000000000000000000000000000	
Multiplicity 1			

Representation by Minors

Theorem (Huneke-Mantero-McCullough-Seceleanu '13)

After a suitable change of generators for I and (x, y), there are only 5 possible forms for M:

(1) *M* is 1-generic
(2)
$$M = \begin{pmatrix} y & 0 & a_2 & \cdots & a_g \\ -x & b_1 & b_2 & \cdots & b_g \end{pmatrix}$$
 where $D = \begin{pmatrix} y & a_2 & \cdots & a_g \\ -x & b_2 & \cdots & b_g \end{pmatrix}$ is 1-generic
(3) $M = \begin{pmatrix} y & 0 & 0 & a_3 & \cdots & a_g \\ -x & b_1 & b_2 & b_3 & \cdots & b_g \end{pmatrix}$
(4) $M = \begin{pmatrix} y & 0 & a_2 & a_3 & \cdots & a_g \\ -x & b_1 & 0 & b_3 & \cdots & b_g \end{pmatrix}$ where $D = \begin{pmatrix} y & a_3 & \cdots & a_g \\ -x & b_b & \cdots & b_g \end{pmatrix}$ is 1-generic
(5) $M = \begin{pmatrix} y & 0 & a_2 & a_3 & \cdots & a_g \\ -x & b_1 & 0 & \lambda a_3 & \cdots & b_g \end{pmatrix}$ for some $\lambda \in k$

Background	Koszul Algebras	4 Quadrics	Further Questions
0000000 0000		0000 000000000000000000000000000000000	
Multiplicity 1			

TOOL: 1-Generic Matrices

A $r \times s$ matrix M of linear forms in S is **1-generic** if whenever we have $w^{\mathsf{T}}Mv = 0$ for $w \in k^r$ and $v \in k^s$, we have either w = 0 or v = 0.

The exact sequence $0 \to S/(I:y)(-1) \xrightarrow{y} S/I \to S/(I,y) \to 0$ induces an exact sequence:

$$\operatorname{Tor}_2(S/(I:y),k)_3 \longrightarrow \operatorname{Tor}_2^S(S/I,k)_3 \longrightarrow \operatorname{Tor}_2^S(S/(I,y),k)_3 \frown$$

$$\to \operatorname{Tor}_1^S(S/(I:y),k)_2 \longrightarrow 0$$

 If M is 1-generic and k = k
, then (I : y) = I₂(M) is a prime ideal generated by quadrics of expected height.

Background	Koszul Algebras	4 Quadrics	Further Questions
00000000		0000 000000000000000000000000000	
Multiplicity 1			

TOOL: 1-Generic Matrices

• In that case, $S/I_2(M)$ has an Eagon-Northcott resolution:

	0	1	2	•••	g
0	1	_	_	_	_
1	-	$\binom{g+1}{2}$	$2\binom{g+1}{3}$		$g\binom{g+1}{g+1}$

• The Betti table of $S/(I,y) = S(y,a_1x,\ldots,a_gx)$ is:

	0	1	2	3		g+1
0	1	1	_	_	-	_
1	-	g	$\binom{g+1}{2}$	$\binom{g+1}{3}$		1

So, S/I has no linear syzygies if M is 1-generic!

Background	Koszul Algebras	4 Quadrics	Further Questions
0000000		0000	
0000		000000000000000000000000000000000000000	
Multiplicity 1			

Betti Tables of Koszul Algebras Defined by 4 Quadrics

It suffices to find the possible Betti tables when ht I = 2 and e(R) = 1.

- Being Koszul together with the bound on the projective dimension greatly restricts the shape of the Betti table of R:
 - $\beta_{i,j}^S(R) = 0$ for all i and j > 2i. (Backelin '88, Kempf '90)
 - ▶ $\beta_{i,2i}^S(R) = 0$ for i > ht I. (Avramov-Conca-Iyengar '10)
 - ▶ $\beta_{g,g+1}^S(R) = 0$ if ht $I \ge 2$. (consequence of Koh '99)

Background	Koszul Algebras	4 Quadrics	Further Questions
0000		000000000000000000000000000000000000000	
Multiplicity 1			

Betti Tables of Koszul Algebras Defined by 4 Quadrics

It suffices to find the possible Betti tables when ht I = 2 and e(R) = 1.

• There are only 2 possible shapes for the Betti table of *R*:

		1	С	3		0	1	2	3	4
	0	Т	2	5	0	1	_	_	_	_
0	1	—	—	—	Ĭ	-				
1		Λ	~	~	1	—	4	a	c	-
Т	-	4	a	c	2	_	_	b	d	P
2	-	_	b	d	-			0	a	C
	I				3	—	-	-	-	f

• Computing the Hilbert series using that $\operatorname{ht} I = 2$ and e(R) = 1 reduces this to an integer programming problem.

Background	Koszul Algebras	4 Quadrics	Further Questions
0000		000000000000000000000000000000000000000	
Multiplicity 1			

Betti Tables of Koszul Algebras Defined by 4 Quadrics

It suffices to deduce the possible Betti tables when e(R) = 1.

• There are only 2 possible shapes for the Betti table of *R*:

	0	1	2	3		0	1	2	3	4
	0	1	2	5	0	1	_	_	_	_
0	1	—	—	_	1	-	4	2		
1	_	4	3	_	T	-	4	2	_	_
-		•			2	-	_	4	4	1
2	-	_	1	T	З		_	_	_	_
					5					

• Computing the Hilbert series using that $\operatorname{ht} I = 2$ and e(R) = 1 reduces this to an integer programming problem.

Background	Koszul Algebras	4 Quadrics	Further Questions
00000000		0000	
Multiplicity 1			

Case (iii)

Theorem (Mantero-M '19)

The ring R = S/I has Betti table

	0	1	2	3
0	1	-	-	-
1	-	4	3	-
2	-	-	1	1

if and only if $I = (xz, yz, a_3x + b_3y, a_4x + b_4y)$ for some linear forms $x, y, z, a_3, a_4, b_3, b_4$ such that $ht(a_3x + b_3y, a_4x + b_4y, a_3b_4 - a_4b_3, z) = 3$ and ht(x, y) = 2. In particular, R is LG-quadratic.

Background	Koszul Algebras	4 Quadrics	Further Questions
00000000		0000 000000000000000000000000000	
Multiplicity 1			

TOOL: Annihilators of Cohomology

The dual of the last differential in the resolution of R yields a presentation:

$$S(3)^3 \oplus S(4) \xrightarrow{\varphi_3^*} S(5) \longrightarrow \operatorname{Ext}_S^3(R,S) \longrightarrow 0$$

For
$$\mathfrak{a}_i = \operatorname{Ann}_S \operatorname{Ext}_S^i(R, S)$$
, we have $\prod_i \mathfrak{a}_i \subseteq I$.
(Eisenbud-Evans ??, Schenzel '79)

•
$$\mathfrak{a}_2 = \operatorname{Ann}_S \operatorname{Ext}_S^2(R, S) = I^{\operatorname{unm}} = (x, y).$$

(Eisenbud-Huneke-Vasconcelos '92)

Background	Koszul Algebras	4 Quadrics	Further Questions
0000000		0000	
0000		000000000000000000000000000000000000000	
Multiplicity 1			

TOOL: Annihilators of Cohomology

If z is the linear form in the last differential of the resolution of R, then $z \neq 0$ and $z(x, y) \subseteq \mathfrak{a}_2\mathfrak{a}_3 \subseteq I$.

Theorem (Buchsbaum-Eisenbud Acyclicity Criterion)

A complex of finitely generated free S-modules

$$0 \longrightarrow F_s \xrightarrow{\varphi_s} F_{s-1} \longrightarrow \cdots \longrightarrow F_1 \xrightarrow{\varphi_1} F_0 \longrightarrow 0$$

is acyclic if and only if $\operatorname{ht} I_{r_i}(\varphi_i) \ge i$ for all $i \ge 1$, where $r_i = \sum_{j \ge i} (-1)^{j-i} \operatorname{rank} F_j$.

Background	Koszul Algebras	4 Quadrics	Further Questions
00000000 0000		0000 000000000000000000000000000	
Multiplicity 1			
Case (iv)			

Surprisingly, having the Betti table below does not determine whether R is Koszul!

Background	Koszul Algebras	4 Quadrics	Further Questions
0000		000000000000000000000000000000000000000	
Multiplicity 1			

Case (iv)

Theorem (Mantero-M '19)

The ring R = S/I has Betti table (*) if and only if for some linear forms satisfying specific height conditions, I has one of the the following forms:

- (a) $(x^2, b_3x, a_3x + b_3y, a_4x + b_4y)$
- (b) $(xy, a_2x, b_3y, a_4x + b_4y)$
- (c) $(b_3x, b_4x, a_3x + b_3y, a_4x + b_4y)$
- (d) (a_1x, a_2x, b_3y, b_4y) with (a_1x, a_2x) and (b_3y, b_4y) transversal

Background	Koszul Algebras	4 Quadrics	Further Questions
		000000000000000000000000000000000000000	
Multiplicity 1			

We can view the four quadric generators of $I = (q_1, q_2, q_3, q_4)$ as syzygies on its 4×2 matrix of linear syzgies ℓ :

$$\begin{pmatrix} q_1 & q_2 & q_3 & q_4 \end{pmatrix} \ell = 0 \implies \ell^{\mathsf{T}} \begin{pmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \end{pmatrix} = 0$$

If I has Betti table (*), then ℓ cannot be 1-generic!

Background	Koszul Algebras	4 Quadrics	Further Questions
0000000		0000	
		000000000000000000000000000000000000000	
Multiplicity 1			

- If ℓ were 1-generic:
 - $I_2(\ell)$ is a prime ideal generated by quadrics of expected height.

Background	Koszul Algebras	4 Quadrics	Further Questions
0000		000000000000000000000000000000000000000	
Multiplicity 1			

- If ℓ were 1-generic:
 - $I_2(\ell)$ is a prime ideal generated by quadrics of expected height.
 - $\operatorname{Coker} \ell^{\mathsf{T}}$ is resolved by a Buchsbaum-Rim complex:

$$S(-4)^{2} \xrightarrow{-\ell} S(-3)^{4} \xrightarrow{Q} S(-1)^{4} \xrightarrow{\ell^{\mathsf{T}}} S^{2}$$
$$Q = \begin{pmatrix} 0 & -\Delta_{3,4} & \Delta_{2,4} & -\Delta_{2,3} \\ \Delta_{3,4} & 0 & -\Delta_{1,4} & \Delta_{1,3} \\ -\Delta_{2,4} & \Delta_{1,4} & 0 & -\Delta_{1,2} \\ \Delta_{2,3} & -\Delta_{1,3} & \Delta_{1,2} & 0 \end{pmatrix}$$

where $\Delta_{i,j}$ is the minor involving rows *i* and *j* of ℓ .

Background	Koszul Algebras	4 Quadrics	Further Questions
0000		000000000000000000000000000000000000000	
Multiplicity 1			

- If ℓ were 1-generic:
 - This shows that $I \subseteq I_2(\ell)$.
 - Of the representations by minors of height 2 ideals of multiplicity 1 described by Huneke-Mantero-McCullough-Seceleanu, we know I must contain a reducible quadric if it has 2 independent linear syzygies.

Background	Koszul Algebras	4 Quadrics	Further Questions
0000		000000000000000000000000000000000000000	
Multiplicity 1			

- If ℓ were 1-generic:
 - This shows that $I \subseteq I_2(\ell)$.
 - Of the representations by minors of height 2 ideals of multiplicity 1 described by Huneke-Mantero-McCullough-Seceleanu, we know I must contain a reducible quadric if it has 2 independent linear syzygies.

So, ℓ is not 1-generic. Considering how many other zeros can appear in ℓ gives the 4 possible forms of the ideal.

Background	Koszul Algebras	4 Quadrics	Further Questions
0000		000000000000000000000000000000000000000	
Multiplicity 1			

Case (iv)

Theorem (Mantero-M '19)

The ring R = S/I has Betti table (*) if and only if for some linear forms satisfying specific height conditions, I has one of the the following forms:

- (a) $(x^2, b_3x, a_3x + b_3y, a_4x + b_4y)$
- (b) $(xy, a_2x, b_3y, a_4x + b_4y)$
- (c) $(b_3x, b_4x, a_3x + b_3y, a_4x + b_4y)$
- (d) (a_1x, a_2x, b_3y, b_4y) with (a_1x, a_2x) and (b_3y, b_4y) transversal

Background	Koszul Algebras	4 Quadrics	Further Questions
0000000 0000		0000 00000000000000000000000000	
Multiplicity 1			

Case (iv)

Theorem (Mantero-M '19)

The ring R = S/I has Betti table (*) if and only if for some linear forms satisfying specific height conditions, I has one of the the following forms:

(a)
$$(x^2, b_3x, a_3x + b_3y, a_4x + b_4y)$$
not Koszul(b) $(xy, a_2x, b_3y, a_4x + b_4y)$ not Koszul(c) $(b_3x, b_4x, a_3x + b_3y, a_4x + b_4y)$ not Koszul(d) (a_1x, a_2x, b_3y, b_4y) with (a_1x, a_2x) and (b_3y, b_4y) Koszultransversal

Background	Koszul Algebras	4 Quadrics	Further Questions
00000000		0000 000000000000000000000000000	
Multiplicity 1			

Detecting Non-Koszulness

Theorem (M '18, Avramov-Conca-Iyengar '10)

If R is Koszul, then $Syz_1^S(I)$ is generated by linear and Koszul syzygies.

For example, if $I = (xy, a_2x, b_3y, a_4x + b_4y)$ and we set $q = a_4x + b_4y$:

Background	Koszul Algebras	4 Quadrics	Further Questions
0000		000000000000000000000000000000000000000	
Multiplicity 1			

Detecting Non-Koszulness

Theorem (M '18, Avramov-Conca-Iyengar '10)

If R is Koszul, then $Syz_1^S(I)$ is generated by linear and Koszul syzygies.

For example, if $I = (xy, a_2x, b_3y, a_4x + b_4y)$ and we set $q = a_4x + b_4y$:

$$\operatorname{Syz}_{1}^{S}(I) = \operatorname{Im} \begin{pmatrix} -a_{2} & -b_{3} & q & 0 & 0 & 0 \\ y & 0 & 0 & q & 0 & a_{4}b_{3} \\ 0 & x & 0 & 0 & q & a_{2}b_{4} \\ 0 & 0 & -xy & -a_{2}x & -b_{3}y & -a_{2}b_{3} \end{pmatrix}$$

where the last column is not generated by the linear and Koszul syzygies.

Background	Koszul Algebras	4 Quadrics	Further Questions
0000		000000000000000000000000000000000000000	
Multiplicity 1			

Detecting Non-Koszulness

Theorem (M '18, Avramov-Conca-Iyengar '10)

If R is Koszul, then $Syz_1^S(I)$ is generated by linear and Koszul syzygies.

For example, if $I = (xy, a_2x, b_3y, a_4x + b_4y)$ and we set $q = a_4x + b_4y$:

$$\operatorname{Syz}_{1}^{S}(I) = \operatorname{Im} \begin{pmatrix} -a_{2} & -b_{3} & q & 0 & 0 & 0 \\ y & 0 & 0 & q & 0 & a_{4}b_{3} \\ 0 & x & 0 & 0 & q & a_{2}b_{4} \\ 0 & 0 & -xy & -a_{2}x & -b_{3}y & -a_{2}b_{3} \end{pmatrix}$$

where the last column is not generated by the linear and Koszul syzygies.

Sadly, this argument fails if $I = (b_3x, b_4x, a_3x + b_3y, a_4x + b_4y)$.

Background	Koszul Algebras	4 Quadrics	F
0000000 0000		0000 000000000000000000000000000000000	
Multiplicity 1			

Another Cautionary Example (Roos '93)

For each integer $n \geq 2$, the resolution of \mathbb{Q} over the ring

$$R_n = \frac{\mathbb{Q}[x, y, z, u, v, w]}{(x, y)^2 + (v, w)^2 + L + (z, u)^2}$$

where

$$L = ((x+nw)z - wu, wz + (x+(n-2)w)u, yz, vu)$$

is linear for n steps but fails to be linear at the (n + 1)-th step.

urther Questions

Background	Koszul Algebras	4 Quadrics	Further Questions
00000000		0000 000000000000000000000000000000000	
Multiplicity 1			

Passing Koszulness Around

Proposition (Conca-De Negri-Rossi '13)

Let S be a standard graded k-algebra and R be a quotient ring of S.

- (a) If S is Koszul and $\operatorname{reg}_{S}(R) \leq 1$, then R is Koszul.
- (b) If R is Koszul and $reg_S(R)$ is finite, then S is Koszul.

Here:

$$\operatorname{reg}_{S}(R) = \sup\{j \mid \beta_{i,i+j}^{S}(R) \neq 0\}$$

In particular, Koszul-ness passes to and from quotients by a regular sequence of quadrics.

Background	Koszul Algebras	4 Quadrics	Further Questions
0000000 0000		0000 000000000000000000000000000000000	
Multiplicity 1			

TOOL: Symmetric Algebras

It is enough to check the ring below is not Koszul.

$$R = \frac{k[x, y, a, b]}{(x^2 - y^2, xy, bx, ax - by)}$$

Given a module M with t generators over a ring R', a presentation of the symmetric algebra ${\rm Sym}_{R'}(M)$ is given by:

$$\operatorname{Sym}_{R'}(M) = \frac{R'[u_1, \dots, u_t]}{(\sum_i f_i u_i \mid (f_1, \dots, f_t) \in \operatorname{Syz}_1^{R'}(M))}$$

Background	Koszul Algebras	4 Quadrics	Further Questions
0000000 0000		0000 000000000000000000000000000000000	
Multiplicity 1			

TOOL: Symmetric Algebras

It is enough to check the ring below is not Koszul.

$$R = \frac{k[x, y, a, b]}{(x^2 - y^2, xy, bx, ax - by)} \cong \operatorname{Sym}_{R'}(M)$$

where $R^\prime = k[x,y]/(x^2-y^2,xy)$ and M has a periodic resolution

$$\cdots \longrightarrow R'(-2)^2 \xrightarrow{\begin{pmatrix} y & 0 \\ x & y \end{pmatrix}} R'(-1)^2 \xrightarrow{\begin{pmatrix} x & 0 \\ -y & x \end{pmatrix}} R'^2 \longrightarrow M \longrightarrow 0$$
Background	Koszul Algebras	4 Quadrics
0000000 0000		0000 000000000000000000000000000000000
Multiplicity 1		

0000000

TOOL: Symmetric Algebras

Theorem (Herzog-Hibi-Ohsugi '00)

Suppose $\varphi : R \to R'$ is an algebra retract of standard graded k-algebras. Then R is Koszul if and only if R' is Koszul and R' has a linear resolution as an R-module (via φ).

Background	Koszul Algebras	4 Quadrics
0000000		0000
0000		000000000000000000000000000000000000000
Multiplicity 1		

00000000

TOOL: Symmetric Algebras

Theorem (Herzog-Hibi-Ohsugi '00)

Suppose $\varphi : R \to R'$ is an algebra retract of standard graded k-algebras. Then R is Koszul if and only if R' is Koszul and R' has a linear resolution as an R-module (via φ).

- This reduces the number of syzygies we need to compute from about 340 for k to about 80 for R'.
- The resolutions of R' and k over R fail to be linear 6 steps back if char(k) ≠ 2 and 5 steps back if char(k) = 2.

Background	Koszul Algebras
0000000 0000	
Multiplicity 1	

Consequences of the Structure Theorem

Theorem (Mantero-M '19)

All Koszul algebras defined by $g \leq 4$ quadrics are LG-quadratic.

- Conca's example of a Koszul algebra that is not LG-quadratic is minimal in terms of height, multiplicity, and number of generators.
- We can explicitly describe the defining ideal of any Koszul algebra defined by $g \leq 4$ quadrics (for $k = \overline{k}$).
- We are able to determine when such Koszul algebras have the Backelin-Roos and absolutely Koszul properties.

4 Quadrics

Outline

- Free Resolutions and Betti Numbers

 - Hilbert Series and Related Invariants
- Betti Numbers of Koszul Algebras
- 3 Koszul Algebras Defined by 4 Quadrics
 - The Multiplicity 2 Case
 - The Multiplicity 1 Case

4 Further Questions

Background	Koszul Algebras	4 Quadrics	Further Quest
00000000 0000		0000 000000000000000000000000000	
0000		000000000000000000000000000000000000000	

Further Questions

- 1. What about Koszul algebras defined by $g \ge 5$ quadrics?
 - What do Koszul algebras R = S/I defined by g = 5 quadrics with ht I = 2 and e(R) = 1 look like?
- 2. Is there a *method* for producing other examples of Koszul algebras which are not LG-quadratic?
- 3. Can we remove the $k = \overline{k}$ assumption from the structure theorem?
 - Is there a structure theorem for nondegenerate prime ideals P with ht I = e(S/P) = 2?
 - Is there some ring which is not LG-quadratic but becomes LG-quadratic after field extension?

ions

Noszul Algebras

Further Questions

Background

4. What other nice properties of edge ideals carry over to general Koszul algebras?

• Is $\operatorname{reg} R \leq \operatorname{ht} I$? (It's known that $\operatorname{reg} R \leq \operatorname{pd}_S R$.)

5. Can we characterize when $Sym_R(M)$ is Koszul?