Notation: $k=$ field of characteristic o (eg. $k=\mathbb{C}$)
If $V=$ graded k-vector space,

$$
[V]_{d}=\langle f \in V \mid \operatorname{deg}(f)=d\rangle
$$

Hermite I.P. (interpolation problem):
Fix a set X of $p^{\text {ts }}$ in \mathbb{P}^{n}, fix $m \in \mathbb{Z}_{4}$, deduce information about
$X^{(m)}:=\{$ all hypersurfaces passing through $X \geq m$ times $\}$
$\left(\begin{array}{ll}\text { eg. } & H_{x^{(n)}}(d):=\operatorname{dim}_{k}\left[x^{(m)}\right]_{d} \quad(=\text { Hilbut function }) \\ \text { or } & \alpha\left(X^{(m)}\right):=\min \left\{d \mid \exists f \in X^{(m)} \text { of } \operatorname{deg}(f)=d\right\}\end{array}\right)$

$$
\begin{aligned}
& \text { The case } m=1 \text { is Lagrange I.P. } \\
& \text { eg. (Cayley-Bacharach tum): If } X=\{9 \text { pts }\} \subseteq P^{2} \text { and } H_{x^{(1)}}^{(3) \geq 2} \\
& \Rightarrow \text { every cubic through } 8 \text { pts of } x \text { passes through all } 9] \\
& \text { Eg: } \\
& \alpha\left(x^{(1)}\right)=2 \quad[q] \\
& 3 \leqslant \alpha\left(x^{(2)}\right) \leq 4 \quad\left[q^{2} \in x^{(2)}\right] \\
& \alpha\left(X^{(2)}\right)=3 \quad \rho_{1} l_{2} l_{3} \in X^{(2)}
\end{aligned}
$$

In fact $\alpha\left(X^{(2 t)}\right)=3 t, \forall t \geq 1$.
Already; $x=5$ pts in $\mathbb{P}^{2} \quad \alpha\left(x^{(n)}\right) \quad b_{m} \geq 1$
A Star configuration consists of all the n-wise intersection of $A \geq n$ hyperplanes $l_{1}=0, \ldots, l_{s}=0$ in i^{n} meeting properly.

Eg:

$=$ stan conf. of 3 pts in \mathbb{P}^{2}

$$
\begin{aligned}
& \left(\frac{4}{2}\right)=6 \\
& \binom{5}{2}=10
\end{aligned}
$$

$\operatorname{Thm}_{n}\left(\ldots\right.$, Bocci-Hanbounne 'on): $x=\operatorname{stan} \operatorname{conf} \Rightarrow \alpha\left(x^{(n t)}\right)=s \cdot t, \forall t \geq 1$
"Pf": $\left(l_{1} \cdots l_{s}\right)^{t} \in X^{(n t)} \Rightarrow \alpha\left(X^{(n t)}\right) \leq s t$. Not too hand: " " holds \#)

$$
\left[y . \quad x=10 \text { pts } \alpha\left(x^{(2 t)}\right) \geq 5 t, \forall t \geq 1\right]
$$

2. Linear Aloebra (Lagrange I.P.)

Eg: If $X=r$ pts in $\mathbb{P}^{\prime} \Rightarrow \alpha\left(X^{(m)}\right)=m r, \quad \forall m \geq 1$.
However, for $\mathbb{P}^{n} n \geq 2$: Lagrage I.P. is nearly intractable (in juued).
The (Lagrage I.P. for gevenal pts):
If $x=\left\{p_{1,}, p_{r}\right\} \subseteq \mathbb{P}^{n}$ gemenal $p t s \Rightarrow \alpha\left(x^{(1)}\right)=\min \left\{t \left\lvert\,\binom{ n+t}{n}>r\right.\right\}$
and $\left.H_{x^{(1)}}(d)=\binom{n+d}{n}-r\right), \quad \forall d \geq \alpha\left(x^{(1)}\right)$.

Pf. Let $F \in K\left[x_{0}, x_{n}\right] d, \quad F=\sum\left(c_{i}\right) M_{i} \quad \begin{aligned} & M_{i}=\text { nonorials of eye } d \\ & c \cdot \in k\end{aligned}$

$$
c_{i} \in k
$$

$$
\begin{aligned}
& F \in X^{(1)} \Leftrightarrow\left\{\begin{array}{l}
F\left(P_{1}\right)=0 \\
\vdots \\
F\left(P_{r}\right)=0
\end{array} \rightarrow \text { lin. hong. syst. of } r \text { equations and }\binom{n+d}{n} \text { variables }\binom{=\text { the }}{c_{i}^{\prime} s}\right. \\
& \left.H_{X^{(n)}}(d)=\operatorname{dim}_{k}(\text { null-space of } f)=\begin{array}{c}
n+d \\
n
\end{array}\right)-r k=\binom{n+d}{n}-r \geq 0 \\
& (x \text { is general })\left(b / c d \geq \alpha\left(x^{(1)}\right)\right)
\end{aligned}
$$

3. Commutative Algebra. $P=a$ pt in $\mathbb{P}^{n} \leftrightarrow p=\left(l_{1},, l_{n}\right) \subseteq R=k\left[x_{0}, \ldots, x_{n}\right]$
$F=0$ passes throyh $P \longleftrightarrow F \in P$

$$
F=0 \quad . \quad \quad, \quad x=\left\{p_{1}, P_{r}\right\} \longleftrightarrow F \in p_{1} \cap P_{2 \cap \ldots} \cap \gamma_{m}=: I_{x}
$$

The (Zariski-Nagata): $F=0$ lies in $X^{(m)} \longleftrightarrow F \in p_{1}^{m} \cap p_{2}^{m} \cap \ldots \cap p_{r}^{m}=: I_{x}^{(m)}$ $=m^{\text {th }}$ symbolic power of I_{x}.
Rah: $I_{x}^{n} \subseteq I_{x}^{(n)}, \forall m \geq 1$.

$$
I_{x} \geq I_{x}^{(2)} \geq \ldots \geq I_{x}^{(m)} \supseteq \ldots
$$

Eg:

$$
\begin{aligned}
X=3 \text { pts } \rightarrow I_{x} & =\left(l_{1}, l_{2}\right) \cap\left(l_{1}, l_{3}\right) \cap\left(l_{2}, l_{3}\right) \\
& =\left(l_{1} l_{2}, l_{1} l_{3}, l_{2} l_{3}\right) \\
I_{x}^{(2)} & \left.\left.=\left(l_{1}, l_{2}\right)^{2}\right)\left(l_{1}, l_{3}\right)^{2} l_{2}, l_{3}\right)^{2} \\
& =\left(l_{1} l_{2} l_{3}\right)+I_{x}^{2} ? I_{x}^{2}
\end{aligned}
$$

Hermite I.P. fix $x \subseteq \mathbb{P}^{n} p t s$, deduce info about $I_{x}^{(m)}, y$.

Thy: $\left.X=\left\{P_{1, n} P_{r}\right\} \subseteq \mathbb{P}^{n} \Rightarrow H_{I_{X}(n)}(d) \leq \min \left\{\begin{array}{c}n+d \\ n\end{array}\right), r\left(\begin{array}{c}n+m-1 \\ n \\ \gamma\end{array}\right)\right\}, \forall d, m \in \mathbb{Z}_{+}$. Pf
Sext. Let $F \in K\left[X_{0} X_{n}\right]_{d}$, now $0=F \in X^{(m)} \Leftrightarrow F \in I_{X}^{(m)}$
\Leftrightarrow all $\binom{n+m-1}{n}$ partial derivatives of F of order $m-1$ pass through X

$$
\Leftrightarrow\left\{\begin{array}{l}
\frac{\partial \underline{\alpha}}{\partial \underline{x^{\alpha}}} F\left(P_{1}\right)=0 \\
\vdots \\
\frac{\partial \underline{\alpha}}{\partial \underline{x^{\alpha}}} F(\operatorname{Pr})=0
\end{array}\right.
$$

$$
|\underline{\alpha}|=m-1
$$

\rightarrow this is a hong. lin. System of $r\binom{n+m-1}{n}$ eq' ns in $\binom{n+d}{n}$ variables.
So $H_{R_{X}^{(m)}}(d)=$ rack of this linear system $\leq \min \left\{\binom{n+d}{n}, r\binom{n+m-1}{n}\right\}$
$x^{(m)}$ has exp. dim. in degree d if $" "$ is achieved.
11 (n) mind $\left.\left.{ }^{2+2} 2\right)\binom{2+2-1}{2} \cdot 2\right\}$
$X^{(m)}$ has exp.dim. in degree d if " $"$ is achieved.
Eg. $X=\{2$ pts $\} \subseteq \mathbb{R}^{2}$, then $X^{(2)}$ has exp. dim. in degree $2 \Leftrightarrow H_{R}(2)=\min \left\{\binom{2+2}{2},\binom{2 土 2-1}{2} \cdot 2\right\}$

$$
\begin{aligned}
& I_{X}^{(2)}=6=H_{R}(2) \\
& \left(R=k\left[x_{0}, x_{1}, x_{2}\right]\right)
\end{aligned}
$$

$\Leftrightarrow \exists$ quadric in $I_{x}^{(2)}$
Howere, $l^{2} \in I_{x}^{(2)}$ where $l=$ line through 2 pts $\Rightarrow X^{(2)}$ does not have expected dim. in degree 2.
Thy (Alexander-Hirschowitz ' $q 0 \mathrm{~s}$): $X=r$ general $p t s$ in $\mathbb{I})^{n}$, then x does not have exp. dim. in degree $d \Longleftrightarrow$
(i) $2 \leq r \leq n, d=2$ [Reason: as above]
or
(ii) $r=5, n=2$
or
(iii) $r=7, n=4, d=3$

Reason: Zrat'nal nona curve passing throyh x, 畆's its equations are

$$
I_{2}\left[\begin{array}{lll}
x_{0} & x_{1} & x_{2} \\
x_{1} & x_{2} & x_{3} \\
x_{2} & x_{3} & x_{4}
\end{array}\right]
$$

Now
$x^{(2)}$ has exp. dim. An degree $3 \Leftrightarrow \nRightarrow$ cubic in $x^{(2)}$
However, set C is a cubic in $X^{(2)}$
M-Ha': surly paper on this theorem.
Open Problems: How about
(o) general triple pts?
(.) geneal m-tuple pts in \mathbb{P}^{2} ?
(.) even α of r is wide-open? [Even if $r=0$]
(.) Betti table of $I_{x}^{(2)}$?
(•) Betti table of I_{x} ?
(.) Hill. Auction or Beth table for special sets of p ts?

The $\left[M^{\prime} 20, \operatorname{BDGMOS}\right.$ '20]: If $X=$ star comfy. $\Rightarrow \exists$ explicit formula for Betti table of $I_{x}^{(n)}$.
Idea of pf. We prove $I_{x}^{(m)}$ have C.i. quotients, ie.
$\left(f_{\ldots}, f_{i}\right): f_{i+1}=$ complete

Ida of if. We pore $I_{x}^{(m)}$ have ci. quotients, ie.

$$
\begin{aligned}
& \text { We pore } I_{x} \text { have } \frac{\text { ci. }}{I_{x}^{(m)}=\left(f_{1}, f_{s}\right)} \text { dzfi} \leq \operatorname{dy} f_{i+1} \text { sit. }\left(f_{1}, f_{i}\right): f_{i+1}=\text { complete } \\
& \text { intersection }
\end{aligned}
$$ intersection

\Rightarrow But table is obtained by mapping cones of tosend complexes 9
Nagata's ConJ ('58): $X=r \geq 10$ general pts is \mathbb{P}^{2}

$$
\Rightarrow \alpha\left(X^{(n)}\right)>m \cdot \sqrt{r}, \not t m \geq 1
$$

Known: $r=$ perfect squares (Nagata)
Mirada-Roé 'II: study $r=10$.
Biran' 98 : Nagata's Cong \Leftrightarrow symplectiz packing problem (very hand) (very hand)
SHGH Cont: Conjecturing analogue of Alexander-Hirschouitz in \mathbb{T}^{2} (for nom-wiform I.P.)

