Resurgence via asymptotic resurgence

Michael DiPasquale (Colorado State University) joint with Ben Drabkin (University of Nebraska-Lincoln)

Algebra and Geometry Seminar lowa State University

Symbolic Powers

$$
S=\mathbb{K}\left[x_{0}, \cdots, x_{n}\right], I \subset S \text { an ideal, } \mathbb{K} \text { algebraically closed }
$$

Symbolic Powers

$$
S=\mathbb{K}\left[x_{0}, \cdots, x_{n}\right], I \subset S \text { an ideal, } \mathbb{K} \text { algebraically closed }
$$

Symbolic Power:

$$
I^{(s)}=\bigcap_{P \in \operatorname{Ass}(I)}\left(I^{s} S_{P}\right) \cap S
$$

Symbolic Powers

$S=\mathbb{K}\left[x_{0}, \cdots, x_{n}\right], I \subset S$ an ideal, \mathbb{K} algebraically closed
Symbolic Power:

$$
I^{(s)}=\bigcap_{P \in \operatorname{Ass}(I)}\left(I^{s} S_{P}\right) \cap S
$$

Zariski-Nagata Theorem

Suppose I is the radical ideal of S defining the variety $X=V(I)$ in \mathbb{P}^{n}. Then $I^{(s)}$ consists of all polynomials which vanish to order at least s along X.

Symbolic Powers

$S=\mathbb{K}\left[x_{0}, \cdots, x_{n}\right], I \subset S$ an ideal, \mathbb{K} algebraically closed
Symbolic Power:

$$
I^{(s)}=\bigcap_{P \in \operatorname{Ass}(I)}\left(I^{s} S_{P}\right) \cap S
$$

Zariski-Nagata Theorem

Suppose I is the radical ideal of S defining the variety $X=V(I)$ in \mathbb{P}^{n}. Then $I^{(s)}$ consists of all polynomials which vanish to order at least s along X.

$$
I^{(s)}=\left\{f: \frac{\partial f}{\partial x^{\alpha}} \in I \text { for all }|\alpha| \leq s-1\right\}
$$

Comparing regular and symbolic powers

Given an ideal $I \subset S=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$:

- Regular powers Ir are 'easy' to describe algebraically
- Symbolic powers $I^{(s)}$ are 'easy' to describe geometrically

Comparing regular and symbolic powers

Given an ideal $I \subset S=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$:

- Regular powers Ir are 'easy' to describe algebraically
- Symbolic powers $I^{(s)}$ are 'easy' to describe geometrically
- How do they compare?

Easily verified that $I^{r} \subset I^{(s)}$ if and only if $r \geq s$.

Comparing regular and symbolic powers

Given an ideal $I \subset S=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$:

- Regular powers Ir are 'easy' to describe algebraically
- Symbolic powers $I^{(s)}$ are 'easy' to describe geometrically
- How do they compare?

Easily verified that $I^{r} \subset I^{(s)}$ if and only if $r \geq s$.

Containment Problem

For which pairs of positive integers (s, r) do we have $I^{(s)} \subset I^{r}$?

Containment examples

Example 1: Ideal of rank 1 matrices

$$
M=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right], P=I_{2}(M) \subset \mathbb{K}[a, \ldots, i]
$$

Containment examples

Example 1: Ideal of rank 1 matrices

$$
M=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right], P=I_{2}(M) \subset \mathbb{K}[a, \ldots, i]
$$

- Partial derivatives of $\operatorname{det}(M)$ are 2×2 minors of M

Containment examples

Example 1: Ideal of rank 1 matrices

$$
M=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right], P=I_{2}(M) \subset \mathbb{K}[a, \ldots, i]
$$

- Partial derivatives of $\operatorname{det}(M)$ are 2×2 minors of M
- $\operatorname{det}(M) \in P^{(2)} \backslash P^{2}$

Containment examples

Example 1: Ideal of rank 1 matrices

$$
M=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right], P=I_{2}(M) \subset \mathbb{K}[a, \ldots, i]
$$

- Partial derivatives of $\operatorname{det}(M)$ are 2×2 minors of M
- $\operatorname{det}(M) \in P^{(2)} \backslash P^{2}$
- So $P^{(2)} \neq P^{2}$

Containment examples

Example 1: Ideal of rank 1 matrices

$$
M=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right], P=I_{2}(M) \subset \mathbb{K}[a, \ldots, i]
$$

- Partial derivatives of $\operatorname{det}(M)$ are 2×2 minors of M
- $\operatorname{det}(M) \in P^{(2)} \backslash P^{2}$
- So $P^{(2)} \neq P^{2}$
- Can check $P^{(3)} \subset P^{2}$.

Containment examples

Example 2: Ideal of 3 points in \mathbb{P}^{2}

$$
I=(x y, x z, y z)=(x, y) \cap(x, z) \cap(y, z) \subset \mathbb{K}[x, y, z]
$$

Containment examples

Example 2: Ideal of 3 points in \mathbb{P}^{2}

$$
I=(x y, x z, y z)=(x, y) \cap(x, z) \cap(y, z) \subset \mathbb{K}[x, y, z]
$$

- $(x y z)^{2 k} \in I^{(4 k)}$ (mixed partials of $(x y z)^{2 k}$ of order $4 k-1$ are divisible by $x y, x z$, or $y z$)
- $(x y z)^{2 k} \in I^{3 k}$ but
- $(x y z)^{2 k} \notin I^{3 k+1}$

Containment examples

Example 2: Ideal of 3 points in \mathbb{P}^{2}

$$
I=(x y, x z, y z)=(x, y) \cap(x, z) \cap(y, z) \subset \mathbb{K}[x, y, z]
$$

- $(x y z)^{2 k} \in I^{(4 k)}$ (mixed partials of $(x y z)^{2 k}$ of order $4 k-1$ are divisible by $x y, x z$, or $y z$)
- $(x y z)^{2 k} \in I^{3 k}$ but
- $(x y z)^{2 k} \notin I^{3 k+1}$

So $I^{(4 k)} \not \subset I^{3 k+1}$ but $I^{(4 k)} \subset I^{3 k}$

Containment examples

Example 2: Ideal of 3 points in \mathbb{P}^{2}

$$
I=(x y, x z, y z)=(x, y) \cap(x, z) \cap(y, z) \subset \mathbb{K}[x, y, z]
$$

- $(x y z)^{2 k} \in I^{(4 k)}$ (mixed partials of $(x y z)^{2 k}$ of order $4 k-1$ are divisible by $x y, x z$, or $y z$)
- $(x y z)^{2 k} \in I^{3 k}$ but
- $(x y z)^{2 k} \notin I^{3 k+1}$

So $I^{(4 k)} \not \subset I^{3 k+1}$ but $I^{(4 k)} \subset I^{3 k}$

- More precisely: $I^{r}=I^{(r)} \cap M^{2 r}$ where $M=\langle x, y, z\rangle$
- $I^{(s)} \subset I^{r}$ if and only if $s \geq \frac{4}{3} r$.

Uniform containment

Ein-Lazarsfeld-Smith '01, Hochster-Huneke '02, Ma-Schwede '17:

Uniform containment

Suppose $S=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ (or more generally a regular ring).

- If $I \subset S$ is radical of codimension c, then $I^{(c r)} \subset I^{r}$.

Uniform containment

Ein-Lazarsfeld-Smith '01, Hochster-Huneke '02, Ma-Schwede '17:

Uniform containment

Suppose $S=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ (or more generally a regular ring).

- If $I \subset S$ is radical of codimension c, then $I^{(c r)} \subset I^{r}$.
- If I defines a non-empty variety in \mathbb{P}^{n} then $I^{(n r)} \subset I^{r}$.

Uniform containment

Ein-Lazarsfeld-Smith '01, Hochster-Huneke '02, Ma-Schwede '17:

Uniform containment

Suppose $S=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ (or more generally a regular ring).

- If $I \subset S$ is radical of codimension c, then $I^{(c r)} \subset I^{r}$.
- If I defines a non-empty variety in \mathbb{P}^{n} then $I^{(n r)} \subset I^{r}$.

For 'most' ideals, c can be replaced by a smaller number.

Uniform containment

Ein-Lazarsfeld-Smith '01, Hochster-Huneke '02, Ma-Schwede '17:

Uniform containment

Suppose $S=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ (or more generally a regular ring).

- If $I \subset S$ is radical of codimension c, then $I^{(c r)} \subset I^{r}$.
- If I defines a non-empty variety in \mathbb{P}^{n} then $I^{(n r)} \subset I^{r}$.

For 'most' ideals, c can be replaced by a smaller number.
$I=(x y, x z, y z)=(x, y) \cap(x, z) \cap(y, z)$

- Uniform containment: $I^{(2 r)} \subset I^{r}$

Uniform containment

Ein-Lazarsfeld-Smith '01, Hochster-Huneke '02, Ma-Schwede '17:

Uniform containment

Suppose $S=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ (or more generally a regular ring).

- If $I \subset S$ is radical of codimension c, then $I^{(c r)} \subset I^{r}$.
- If I defines a non-empty variety in \mathbb{P}^{n} then $I^{(n r)} \subset I^{r}$.

For 'most' ideals, c can be replaced by a smaller number.
$I=(x y, x z, y z)=(x, y) \cap(x, z) \cap(y, z)$

- Uniform containment: $I^{(2 r)} \subset I^{r}$
- Previous slide: $I^{([4 / 3 \cdot r\rceil)} \subset I^{r}$

Resurgence

Introduced by Bocci and Harbourne '10:
Resurgence:

$$
\rho(I):=\sup \left\{\frac{s}{r}: I^{(s)} \not \subset I^{r}\right\}
$$

Resurgence

Introduced by Bocci and Harbourne '10:
Resurgence:

$$
\begin{aligned}
\rho(I) & :=\sup \left\{\frac{s}{r}: I^{(s)} \not \subset I^{r}\right\} \\
& =\inf \left\{q \in \mathbb{Q}: I^{(\lceil q r\rceil)} \subset I^{r} \text { for all } r \in \mathbb{Z}_{>0}\right\}
\end{aligned}
$$

Resurgence

Introduced by Bocci and Harbourne '10:
Resurgence:

$$
\begin{aligned}
\rho(I) & :=\sup \left\{\frac{s}{r}: I^{(s)} \not \subset I^{r}\right\} \\
& =\inf \left\{q \in \mathbb{Q}: I(\lceil q r\rceil) \subset I^{r} \text { for all } r \in \mathbb{Z}_{>0}\right\}
\end{aligned}
$$

If I is an ideal of codimension c, uniform containment $\Longrightarrow \rho(I) \leq c$.

Resurgence

Introduced by Bocci and Harbourne '10:
Resurgence:

$$
\begin{aligned}
\rho(I) & :=\sup \left\{\frac{s}{r}: I^{(s)} \not \subset I^{r}\right\} \\
& =\inf \left\{q \in \mathbb{Q}: I(\lceil q r\rceil) \subset I^{r} \text { for all } r \in \mathbb{Z}_{>0}\right\}
\end{aligned}
$$

If I is an ideal of codimension c, uniform containment $\Longrightarrow \rho(I) \leq c$.

- $I=(x y, x z, y z)=(x, y) \cap(x, z) \cap(y, z)$
- $\rho(I)=4 / 3$.

Asymptotic resurgence

Refinement introduced by Guardo, Harbourne, and Van Tuyl '13:
Asymptotic resurgence:

$$
\widehat{\rho}(I):=\sup \left\{\frac{s}{r}: I^{(s t)} \not \subset I^{r t} \text { for all } t \gg 0\right\}
$$

Asymptotic resurgence

Refinement introduced by Guardo, Harbourne, and Van Tuyl '13:
Asymptotic resurgence:

$$
\begin{aligned}
\widehat{\rho}(I) & :=\sup \left\{\frac{s}{r}: I^{(s t)} \not \subset I^{r t} \text { for all } t \gg 0\right\} \\
& =\inf \left\{q \in \mathbb{Q}: I^{(\lceil q r\rceil)} \subset I^{r} \text { for infinitely many } r \in \mathbb{Z}_{>0}\right\}
\end{aligned}
$$

Asymptotic resurgence

Refinement introduced by Guardo, Harbourne, and Van Tuyl '13:
Asymptotic resurgence:

$$
\begin{aligned}
& \begin{array}{l}
\widehat{\rho}(I) \quad
\end{array} \quad:=\sup \left\{\frac{s}{r}: I^{(s t)} \not \subset I^{r t} \text { for all } t \gg 0\right\} \\
& \quad=\inf \left\{q \in \mathbb{Q}: I^{(\lceil q r\rceil)} \subset I^{r} \text { for infinitely many } r \in \mathbb{Z}_{>0}\right\} \\
& I=(x y, x z, y z)=(x, y) \cap(x, z) \cap(y, z) \\
& \widehat{\rho}(I)=4 / 3=\rho(I) .
\end{aligned}
$$

Asymptotic resurgence

Refinement introduced by Guardo, Harbourne, and Van Tuyl '13:
Asymptotic resurgence:

$$
\begin{aligned}
& \begin{array}{l}
\widehat{\rho}(I) \quad \\
\quad:=\sup \left\{\frac{s}{r}: I^{(s t)} \not \subset I^{r t} \text { for all } t \gg 0\right\} \\
\quad=\inf \left\{q \in \mathbb{Q}: I^{(\lceil q r\rceil)} \subset I^{r} \text { for infinitely many } r \in \mathbb{Z}_{>0}\right\} \\
I=(x y, x z, y z)=(x, y) \cap(x, z) \cap(y, z) \\
\widehat{\rho}(I)=4 / 3=\rho(I)
\end{array} .
\end{aligned}
$$

In general $\widehat{\rho}(I) \leq \rho(I)$ (strict inequality may occur [DHSSTG'14], but these examples are rare!).

Asymptotic resurgence < Resurgence [DFMS '19]

Fano plane

Asymptotic resurgence < Resurgence [DFMS '19]

Fano plane

Edge ideal
$I=\langle a b c, a d g, a e f, b d f, b e g, c d e, c f g\rangle$

Asymptotic resurgence < Resurgence [DFMS '19]

Fano plane

$$
I=\langle a b c, a d g, a e f, b d f, b e g, c d e, c f g\rangle
$$

- abcdefg $\in I^{(3)} \backslash I^{2}$ (each order two partial of abcdefg is divisible by two generators of I)

Asymptotic resurgence < Resurgence [DFMS '19]

Fano plane

$$
I=\langle a b c, a d g, a e f, b d f, b e g, c d e, c f g\rangle
$$

- abcdefg $\in I^{(3)} \backslash I^{2}$ (each order two partial of abcdefg is divisible by two generators of I)
- $\rho(I)=\sup \left\{\frac{s}{r}: I^{(s)} \not \subset I^{r}\right\}=3 / 2$

Asymptotic resurgence < Resurgence [DFMS '19]

Fano plane

$$
I=\langle a b c, a d g, a e f, b d f, b e g, c d e, c f g\rangle
$$

- abcdefg $\in I^{(3)} \backslash I^{2}$ (each order two partial of abcdefg is divisible by two generators of I)
- $\rho(I)=\sup \left\{\frac{s}{r}: I^{(s)} \not \subset I^{r}\right\}=3 / 2$
- $\widehat{\rho}(I)=\sup \left\{\frac{s}{r}: I^{(s t)} \not \subset I^{r t}\right.$ for all $\left.t \gg 0\right\}=9 / 7$!

Asymptotic resurgence < Resurgence [DFMS '19]

Fano plane

- abcdefg $\in I^{(3)} \backslash I^{2}$ (each order two partial of abcdefg is divisible by two generators of I)
- $\rho(I)=\sup \left\{\frac{s}{r}: I^{(s)} \not \subset I^{r}\right\}=3 / 2$
- $\widehat{\rho}(I)=\sup \left\{\frac{s}{r}: I^{(s t)} \not \subset I^{r t}\right.$ for all $\left.t \gg 0\right\}=9 / 7$!
$I^{(3 t)} \subset I^{2 t}$ for infinitely many $t \in \mathbb{Z}_{>0}$

Integral closures

Integral closure of $I \subset S=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ is:
$\bar{I}:=\left\{f:\right.$ there is $c \neq 0 \in S$ s.t. $c f^{k} \in I^{k}$ for infinitely many $\left.k \in \mathbb{Z}_{>0}\right\}$

Integral closures

Integral closure of $I \subset S=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ is:
$\bar{I}:=\left\{f:\right.$ there is $c \neq 0 \in S$ s.t. $c f^{k} \in I^{k}$ for infinitely many $\left.k \in \mathbb{Z}_{>0}\right\}$
If I is a monomial ideal and m is a monomial,

$$
m \in \bar{I} \Longleftrightarrow m^{k} \in I^{k} \text { for some } k \in \mathbb{Z}_{>0}
$$

Integral closures

Integral closure of $I \subset S=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ is:
$\bar{I}:=\left\{f:\right.$ there is $c \neq 0 \in S$ s.t. $c f^{k} \in I^{k}$ for infinitely many $\left.k \in \mathbb{Z}_{>0}\right\}$
If I is a monomial ideal and m is a monomial,

$$
m \in \bar{I} \Longleftrightarrow m^{k} \in I^{k} \text { for some } k \in \mathbb{Z}_{>0}
$$

Fano plane ideal: $I=\langle a b c, a d g, a e f, b d f, b e g, c d e, c f g\rangle$

Integral closures

Integral closure of $I \subset S=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ is:
$\bar{I}:=\left\{f:\right.$ there is $c \neq 0 \in S$ s.t. $c f^{k} \in I^{k}$ for infinitely many $\left.k \in \mathbb{Z}_{>0}\right\}$
If I is a monomial ideal and m is a monomial,

$$
m \in \bar{I} \Longleftrightarrow m^{k} \in I^{k} \text { for some } k \in \mathbb{Z}_{>0}
$$

Fano plane ideal: $I=\langle a b c, a d g, a e f, b d f, b e g, c d e, c f g\rangle$

- $m=a b c d e f g$
- $m^{3} \in I^{7}$ (take product of all generators)
- So $m^{3} \in I^{6} \Longrightarrow m \in \overline{I^{2}}$ (but $m \notin I^{2}$!)

Asymptotic resurgence and integral closures

Asymptotic resurgence via integral closures [-FMS '19]

If I is an ideal of $S=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ then

$$
\widehat{\rho}(I)=\sup \left\{\frac{s}{r}: I^{(s)} \not \subset \overline{I r}\right\}
$$

Asymptotic resurgence and integral closures

Asymptotic resurgence via integral closures [-FMS '19]

If I is an ideal of $S=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ then

$$
\begin{aligned}
\widehat{\rho}(I) & =\sup \left\{\frac{s}{r}: I^{(s)} \not \subset \overline{I r}\right\} \\
& =\inf \left\{q \in \mathbb{Q}: I(\lceil q r\rceil) \subset \overline{I^{r}} \text { for all } r \in \mathbb{Z}_{>0}\right\}
\end{aligned}
$$

Asymptotic resurgence and integral closures

Asymptotic resurgence via integral closures [-FMS '19]

If I is an ideal of $S=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ then

$$
\begin{aligned}
\widehat{\rho}(I) & =\sup \left\{\frac{s}{r}: I^{(s)} \not \subset \overline{I r}\right\} \\
& =\inf \left\{q \in \mathbb{Q}: I(\lceil q r\rceil) \subset \overline{I^{r}} \text { for all } r \in \mathbb{Z}_{>0}\right\}
\end{aligned}
$$

- Recall: $\widehat{\rho}(I)=\sup \left\{\frac{s}{r}: I^{(s t)} \not \subset I^{r t}\right.$ for all $\left.t \gg 0\right\}$

Asymptotic resurgence and integral closures

Asymptotic resurgence via integral closures [-FMS '19]

If I is an ideal of $S=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ then

$$
\begin{aligned}
\widehat{\rho}(I) & =\sup \left\{\frac{s}{r}: I^{(s)} \not \subset \overline{I^{r}}\right\} \\
& =\inf \left\{q \in \mathbb{Q}: I^{(\lceil q r\rceil)} \subset \overline{I^{r}} \text { for all } r \in \mathbb{Z}_{>0}\right\}
\end{aligned}
$$

- Recall: $\widehat{\rho}(I)=\sup \left\{\frac{s}{r}: I^{(s t)} \not \subset I^{r t}\right.$ for all $\left.t \gg 0\right\}$
- Theorem holds in analytically unramified rings (just need finiteness of integral closures)

When asymptotic resurgence is less than resurgence

Theorem A $(A R<R)$ [-D '20]

Suppose I is an ideal of $S=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ and $\widehat{\rho}(I)<\rho(I)$. Then there are positive integers M, N so that

$$
\rho(I)=\max _{1 \leq s \leq N, 1 \leq r \leq M}\left\{\frac{s}{r}: I^{(s)} \not \subset I^{r}\right\} .
$$

When asymptotic resurgence is less than resurgence

Theorem A (AR<R) [-D '20]

Suppose I is an ideal of $S=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ and $\widehat{\rho}(I)<\rho(I)$. Then there are positive integers M, N so that

$$
\rho(I)=\max _{1 \leq s \leq N, 1 \leq r \leq M}\left\{\frac{s}{r}: I^{(s)} \not \subset I^{r}\right\} .
$$

- Can be made computationally effective in some cases.

When asymptotic resurgence is less than resurgence

Theorem A $(A R<R)$ [-D '20]

Suppose I is an ideal of $S=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ and $\widehat{\rho}(I)<\rho(I)$. Then there are positive integers M, N so that

$$
\rho(I)=\max _{1 \leq s \leq N, 1 \leq r \leq M}\left\{\frac{s}{r}: I^{(s)} \not \subset I^{r}\right\} .
$$

- Can be made computationally effective in some cases.
- If $\widehat{\rho}(I)<\rho(I)$ then $\rho(I)$ is rational.

When asymptotic resurgence is less than resurgence

Theorem A (AR<R) [-D '20]

Suppose I is an ideal of $S=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ and $\widehat{\rho}(I)<\rho(I)$. Then there are positive integers M, N so that

$$
\rho(I)=\max _{1 \leq s \leq N, 1 \leq r \leq M}\left\{\frac{s}{r}: I^{(s)} \not \subset I^{r}\right\} .
$$

- Can be made computationally effective in some cases.
- If $\widehat{\rho}(I)<\rho(I)$ then $\rho(I)$ is rational.

Theorem B [-D '20]

If the symbolic Rees algebra of an ideal is finitely generated, then $\rho(I)$ is rational.

For instance, the resurgence of monomial ideals is rational.

A conjecture of Harbourne refining uniform containment

Uniform containment

If I is a radical ideal of codimension c in $S=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$, then $I^{(c r)} \subset I^{r}$ for every $r \geq 1$.

A conjecture of Harbourne refining uniform containment

Uniform containment

If I is a radical ideal of codimension c in $S=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$, then $I^{(c r)} \subset I^{r}$ for every $r \geq 1$.

Harbourne's Conjecture
$I^{(c r-c+1)} \subset I^{r}$ for every $r \geq 1$.

A conjecture of Harbourne refining uniform containment

Uniform containment

If I is a radical ideal of codimension c in $S=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$, then $I^{(c r)} \subset I^{r}$ for every $r \geq 1$.

Harbourne's Conjecture

$I^{(c r-c+1)} \subset I^{r}$ for every $r \geq 1$.
Is true for:

- Squarefree monomial ideals

A conjecture of Harbourne refining uniform containment

Uniform containment

If I is a radical ideal of codimension c in $S=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$, then $I^{(c r)} \subset I^{r}$ for every $r \geq 1$.

Harbourne's Conjecture

$I^{(c r-c+1)} \subset I^{r}$ for every $r \geq 1$.
Is true for:

- Squarefree monomial ideals
- ideals of general points in $\mathbb{P}^{2}\left[\mathrm{HH}\right.$ '13] and $\mathbb{P}^{3}\left[\mathrm{D}^{\prime} 15\right]$

A conjecture of Harbourne refining uniform containment

Uniform containment

If I is a radical ideal of codimension c in $S=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$, then $I^{(c r)} \subset I^{r}$ for every $r \geq 1$.

Harbourne's Conjecture

$I^{(c r-c+1)} \subset I^{r}$ for every $r \geq 1$.
Is true for:

- Squarefree monomial ideals
- ideals of general points in $\mathbb{P}^{2}\left[\mathrm{HH}\right.$ '13] and $\mathbb{P}^{3}\left[\mathrm{D}^{\prime} 15\right]$

Counterexamples to Harbourne's conjecture

Dumnicki-Szemberg-Tutaj-Gasińska '13

If I is the ideal of the intersection points of a certain line arrangement in $\mathbb{P}^{2}(c=2)$, then $I^{(4)} \subset I^{2}$ (uniform containment) but $I^{(2 \cdot 2-2+1=3)} \not \subset I^{2}$.

Counterexamples to Harbourne's conjecture

Dumnicki-Szemberg-Tutaj-Gasińska '13

If I is the ideal of the intersection points of a certain line arrangement in $\mathbb{P}^{2}(c=2)$, then $I^{(4)} \subset I^{2}$ (uniform containment) but $I^{(2 \cdot 2-2+1=3)} \not \subset I^{2}$.

Several other examples followed.

Counterexamples to Harbourne's conjecture

Dumnicki-Szemberg-Tutaj-Gasińska '13

If I is the ideal of the intersection points of a certain line arrangement in $\mathbb{P}^{2}(c=2)$, then $I^{(4)} \subset I^{2}$ (uniform containment) but $I^{(2 \cdot 2-2+1=3)} \not \subset I^{2}$.

Several other examples followed. (For many of these $\widehat{\rho}(I)<\rho(I)$.)

Counterexamples to Harbourne's conjecture

Dumnicki-Szemberg-Tutaj-Gasińska '13

If I is the ideal of the intersection points of a certain line arrangement in $\mathbb{P}^{2}(c=2)$, then $I^{(4)} \subset I^{2}$ (uniform containment) but $I^{(2 \cdot 2-2+1=3)} \not \subset I^{2}$.

Several other examples followed. (For many of these $\widehat{\rho}(I)<\rho(I)$.)
Stable Harbourne conjecture: Grifo '20

$$
I^{(c r-c+1)} \subset I^{r} \text { for all } r \gg 0 .
$$

Expected resurgence

- By uniform containment, if $\operatorname{codim}(I)=c$ then $\rho(I) \leq c$.

Expected resurgence

- By uniform containment, if $\operatorname{codim}(I)=c$ then $\rho(I) \leq c$.
- There are families of ideals whose resurgence is arbitrarily close to the codimension.

Expected resurgence

- By uniform containment, if $\operatorname{codim}(I)=c$ then $\rho(I) \leq c$.
- There are families of ideals whose resurgence is arbitrarily close to the codimension.
- Lampa-Baczyńska and Malara '15:

$$
I=\bigcap_{0 \leq i<j \leq n}\left\langle x_{i}, x_{j}\right\rangle=\left\langle\prod_{i \neq j} x_{i}: j=0, \ldots, n\right\rangle
$$

has $\rho(I)=2-\frac{2}{n+1}$.

Expected resurgence

- By uniform containment, if $\operatorname{codim}(I)=c$ then $\rho(I) \leq c$.
- There are families of ideals whose resurgence is arbitrarily close to the codimension.
- Lampa-Baczyńska and Malara '15:

$$
I=\bigcap_{0 \leq i<j \leq n}\left\langle x_{i}, x_{j}\right\rangle=\left\langle\prod_{i \neq j} x_{i}: j=0, \ldots, n\right\rangle
$$

has $\rho(I)=2-\frac{2}{n+1}$.

- There is no example of a radical ideal with resurgence equal to its codimension.

Expected resurgence

- By uniform containment, if $\operatorname{codim}(I)=c$ then $\rho(I) \leq c$.
- There are families of ideals whose resurgence is arbitrarily close to the codimension.
- Lampa-Baczyńska and Malara '15:

$$
I=\bigcap_{0 \leq i<j \leq n}\left\langle x_{i}, x_{j}\right\rangle=\left\langle\prod_{i \neq j} x_{i}: j=0, \ldots, n\right\rangle
$$

has $\rho(I)=2-\frac{2}{n+1}$.

- There is no example of a radical ideal with resurgence equal to its codimension.
- If $\rho(I)<c$ then I satisfies the stable Harbourne conjecture (and more!)
- Follows quickly from Theorem $\mathrm{A}(\mathrm{AR}<\mathrm{R})$ that $\rho(I)<c$ is implied by $\widehat{\rho}(I)<c$.

Inspired by recent results of Grifo-Huneke-Mukundan ['19, '20]:

Inspired by recent results of Grifo-Huneke-Mukundan ['19, '20]:

Theorem C [-D '20]

Suppose $I \subset \mathbb{K}\left[x_{0}, \cdots, x_{n}\right]$ is radical with $\operatorname{codim}(I)=c$. If $I^{(r c-c)} \subset \overline{I^{r}}$ for some $r \in \mathbb{Z}_{>0}$ then $\widehat{\rho}(I) \leq c-\frac{1}{r}$. In particular, I has expected resurgence.

Inspired by recent results of Grifo-Huneke-Mukundan ['19, '20]:

Theorem C [-D '20]

Suppose $I \subset \mathbb{K}\left[x_{0}, \cdots, x_{n}\right]$ is radical with $\operatorname{codim}(I)=c$. If $I^{(r c-c)} \subset \overline{I^{r}}$ for some $r \in \mathbb{Z}_{>0}$ then $\widehat{\rho}(I) \leq c-\frac{1}{r}$. In particular, I has expected resurgence.

A containment for squarefree monomial ideals [-D '20]

If $I \subset \mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ is a squarefree monomial ideal of codimension c, then $I^{(r c-c)} \subset I^{r}$ for $r \geq n+1$. In particular, squarefree monomial ideals have expected resurgence.

Inspired by recent results of Grifo-Huneke-Mukundan ['19, '20]:

Theorem C [-D '20]

Suppose $I \subset \mathbb{K}\left[x_{0}, \cdots, x_{n}\right]$ is radical with $\operatorname{codim}(I)=c$. If $I^{(r c-c)} \subset \overline{I r}$ for some $r \in \mathbb{Z}_{>0}$ then $\widehat{\rho}(I) \leq c-\frac{1}{r}$. In particular, I has expected resurgence.

A containment for squarefree monomial ideals [-D '20]

If $I \subset \mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ is a squarefree monomial ideal of codimension c, then $I^{(r c-c)} \subset I^{r}$ for $r \geq n+1$. In particular, squarefree monomial ideals have expected resurgence.

Question

Suppose I is a radical ideal in $\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$. Is $I^{(r c-c)} \subset \overline{I^{r}}$ satisfied for some $r \gg 0$? If so, can r be chosen uniformly for all radical ideals? Can we drop the assumption that I is radical?

Thank you!

