Resurgence via asymptotic resurgence

Michael DiPasquale (Colorado State University) joint with Ben Drabkin (University of Nebraska-Lincoln)

> Algebra and Geometry Seminar Iowa State University

 $S = \mathbb{K}[x_0, \cdots, x_n], I \subset S$ an ideal, \mathbb{K} algebraically closed

$$S = \mathbb{K}[x_0, \cdots, x_n], I \subset S$$
 an ideal, \mathbb{K} algebraically closed

Symbolic Power:

$$I^{(s)} = \bigcap_{P \in \mathsf{Ass}(I)} (I^s S_P) \cap S$$

$$S = \mathbb{K}[x_0, \cdots, x_n], I \subset S$$
 an ideal, \mathbb{K} algebraically closed

Symbolic Power:

$$I^{(s)} = \bigcap_{P \in \mathsf{Ass}(I)} (I^s S_P) \cap S$$

Zariski-Nagata Theorem

Suppose *I* is the radical ideal of *S* defining the variety X = V(I) in \mathbb{P}^n . Then $I^{(s)}$ consists of all polynomials which vanish to order at least *s* along *X*.

$$S = \mathbb{K}[x_0, \cdots, x_n], I \subset S$$
 an ideal, \mathbb{K} algebraically closed

Symbolic Power:

$$I^{(s)} = \bigcap_{P \in \mathsf{Ass}(I)} (I^s S_P) \cap S$$

Zariski-Nagata Theorem

Suppose *I* is the radical ideal of *S* defining the variety X = V(I) in \mathbb{P}^n . Then $I^{(s)}$ consists of all polynomials which vanish to order at least *s* along *X*.

$$I^{(s)} = \left\{ f : rac{\partial f}{\partial x^{lpha}} \in I ext{ for all } |lpha| \leq s-1
ight\}$$

Given an ideal $I \subset S = \mathbb{K}[x_0, \ldots, x_n]$:

- Regular powers I^r are 'easy' to describe algebraically
- Symbolic powers $I^{(s)}$ are 'easy' to describe geometrically

Given an ideal $I \subset S = \mathbb{K}[x_0, \ldots, x_n]$:

- Regular powers I^r are 'easy' to describe algebraically
- Symbolic powers $I^{(s)}$ are 'easy' to describe geometrically
- How do they compare?

Easily verified that $I^r \subset I^{(s)}$ if and only if $r \ge s$.

Given an ideal $I \subset S = \mathbb{K}[x_0, \ldots, x_n]$:

- Regular powers I^r are 'easy' to describe algebraically
- Symbolic powers $I^{(s)}$ are 'easy' to describe geometrically
- How do they compare?

Easily verified that $I^r \subset I^{(s)}$ if and only if $r \ge s$.

Containment Problem

For which pairs of positive integers (s, r) do we have $I^{(s)} \subset I^r$?

$$M = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}, P = I_2(M) \subset \mathbb{K}[a, \ldots, i].$$

$$M = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}, P = I_2(M) \subset \mathbb{K}[a, \ldots, i].$$

• Partial derivatives of det(M) are 2 \times 2 minors of M

$$M = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}, P = I_2(M) \subset \mathbb{K}[a, \ldots, i].$$

Partial derivatives of det(M) are 2 × 2 minors of M
det(M) ∈ P⁽²⁾ \ P²

$$M = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}, P = I_2(M) \subset \mathbb{K}[a, \ldots, i].$$

- Partial derivatives of det(M) are 2 \times 2 minors of M
- $\det(M) \in P^{(2)} \setminus P^2$
- So $P^{(2)} \neq P^2$

$$M = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}, P = I_2(M) \subset \mathbb{K}[a, \ldots, i].$$

- Partial derivatives of det(M) are 2×2 minors of M
- $det(M) \in P^{(2)} \setminus P^2$
- So $P^{(2)} \neq P^2$
- Can check $P^{(3)} \subset P^2$.

$$I = (xy, xz, yz) = (x, y) \cap (x, z) \cap (y, z) \subset \mathbb{K}[x, y, z]$$

$$I = (xy, xz, yz) = (x, y) \cap (x, z) \cap (y, z) \subset \mathbb{K}[x, y, z]$$

- (xyz)^{2k} ∈ I^(4k) (mixed partials of (xyz)^{2k} of order 4k − 1 are divisible by xy, xz, or yz)
- $(xyz)^{2k} \in I^{3k}$ but
- $(xyz)^{2k} \notin I^{3k+1}$

$$I = (xy, xz, yz) = (x, y) \cap (x, z) \cap (y, z) \subset \mathbb{K}[x, y, z]$$

- (xyz)^{2k} ∈ I^(4k) (mixed partials of (xyz)^{2k} of order 4k − 1 are divisible by xy, xz, or yz)
- $(xyz)^{2k} \in I^{3k}$ but

•
$$(xyz)^{2k} \notin I^{3k+1}$$

So $I^{(4k)} \not\subset I^{3k+1}$ but $I^{(4k)} \subset I^{3k}$

$$I = (xy, xz, yz) = (x, y) \cap (x, z) \cap (y, z) \subset \mathbb{K}[x, y, z]$$

- (xyz)^{2k} ∈ I^(4k) (mixed partials of (xyz)^{2k} of order 4k − 1 are divisible by xy, xz, or yz)
- $(xyz)^{2k} \in I^{3k}$ but

•
$$(xyz)^{2k} \notin I^{3k+1}$$

So $I^{(4k)} \not\subset I^{3k+1}$ but $I^{(4k)} \subset I^{3k}$

- More precisely: $I^r = I^{(r)} \cap M^{2r}$ where $M = \langle x, y, z \rangle$
- $I^{(s)} \subset I^r$ if and only if $s \ge \frac{4}{3}r$.

Uniform containment

Suppose $S = \mathbb{K}[x_0, \dots, x_n]$ (or more generally a regular ring).

• If $I \subset S$ is radical of codimension c, then $I^{(cr)} \subset I^r$.

Uniform containment

Suppose $S = \mathbb{K}[x_0, \dots, x_n]$ (or more generally a regular ring).

- If $I \subset S$ is radical of codimension c, then $I^{(cr)} \subset I^r$.
- If I defines a non-empty variety in \mathbb{P}^n then $I^{(nr)} \subset I^r$.

Uniform containment

Suppose $S = \mathbb{K}[x_0, \dots, x_n]$ (or more generally a regular ring).

- If $I \subset S$ is radical of codimension c, then $I^{(cr)} \subset I^r$.
- If I defines a non-empty variety in \mathbb{P}^n then $I^{(nr)} \subset I^r$.

For 'most' ideals, c can be replaced by a smaller number.

Uniform containment

Suppose $S = \mathbb{K}[x_0, \dots, x_n]$ (or more generally a regular ring).

- If $I \subset S$ is radical of codimension c, then $I^{(cr)} \subset I^r$.
- If I defines a non-empty variety in \mathbb{P}^n then $I^{(nr)} \subset I^r$.

For 'most' ideals, *c* can be replaced by a smaller number. $I = (xy, xz, yz) = (x, y) \cap (x, z) \cap (y, z)$

• Uniform containment: $I^{(2r)} \subset I^r$

Uniform containment

Suppose $S = \mathbb{K}[x_0, \dots, x_n]$ (or more generally a regular ring).

- If $I \subset S$ is radical of codimension c, then $I^{(cr)} \subset I^r$.
- If I defines a non-empty variety in \mathbb{P}^n then $I^{(nr)} \subset I^r$.

For 'most' ideals, *c* can be replaced by a smaller number. $I = (xy, xz, yz) = (x, y) \cap (x, z) \cap (y, z)$

- Uniform containment: $I^{(2r)} \subset I^r$
- Previous slide: $I^{(\lceil 4/3 \cdot r \rceil)} \subset I^r$

Resurgence:

$$\rho(I) := \sup\{\frac{s}{r} : I^{(s)} \not\subset I^r\}$$

Resurgence:

$$\rho(I) := \sup\{\frac{s}{r} : I^{(s)} \not\subset I^r\}$$
$$= \inf\{q \in \mathbb{Q} : I^{(\lceil qr \rceil)} \subset I^r \text{ for all } r \in \mathbb{Z}_{>0}\}$$

Resurgence:

$$\rho(I) := \sup\{\frac{s}{r} : I^{(s)} \not\subset I^r\}$$
$$= \inf\{q \in \mathbb{Q} : I^{(\lceil qr \rceil)} \subset I^r \text{ for all } r \in \mathbb{Z}_{>0}\}$$

If I is an ideal of codimension c, uniform containment $\implies \rho(I) \leq c.$

Resurgence:

$$\begin{split} \rho(I) &:= \sup\{\frac{s}{r} : I^{(s)} \not\subset I^r\} \\ &= \inf\{q \in \mathbb{Q} : I^{(\lceil qr \rceil)} \subset I^r \text{ for all } r \in \mathbb{Z}_{>0}\} \end{split}$$

If I is an ideal of codimension c, uniform containment $\implies \rho(I) \leq c$.

$$\widehat{\rho}(I) := \sup\{\frac{s}{r} : I^{(st)} \not\subset I^{rt} \text{ for all } t \gg 0\}$$

$$\begin{split} \widehat{\rho}(I) &:= \sup\{\frac{s}{r} : I^{(st)} \not\subset I^{rt} \text{ for all } t \gg 0\} \\ &= \inf\{q \in \mathbb{Q} : I^{(\lceil qr \rceil)} \subset I^{r} \text{ for infinitely many } r \in \mathbb{Z}_{>0}\} \end{split}$$

$$\widehat{\rho}(I) := \sup\{\frac{s}{r} : I^{(st)} \not\subset I^{rt} \text{ for all } t \gg 0\}$$
$$= \inf\{q \in \mathbb{Q} : I^{(\lceil qr \rceil)} \subset I^{r} \text{ for infinitely many } r \in \mathbb{Z}_{>0}\}$$
$$I = (xy, xz, yz) = (x, y) \cap (x, z) \cap (y, z)$$
$$\widehat{\rho}(I) = 4/3 = \rho(I).$$

$$\widehat{\rho}(I) := \sup\{\frac{s}{r} : I^{(st)} \not\subset I^{rt} \text{ for all } t \gg 0\}$$
$$= \inf\{q \in \mathbb{Q} : I^{(\lceil qr \rceil)} \subset I^{r} \text{ for infinitely many } r \in \mathbb{Z}_{>0}\}$$
$$I = (xy, xz, yz) = (x, y) \cap (x, z) \cap (y, z)$$
$$\widehat{\rho}(I) = 4/3 = \rho(I).$$

In general $\hat{\rho}(I) \leq \rho(I)$ (strict inequality may occur [DHSSTG'14], but these examples are rare!).

Fano plane

abcdefg ∈ I⁽³⁾ \ I² (each order two partial of abcdefg is divisible by two generators of I)

abcdefg ∈ I⁽³⁾ \ I² (each order two partial of abcdefg is divisible by two generators of I)

•
$$\rho(I) = \sup\{\frac{s}{r} : I^{(s)} \not\subset I^r\} = 3/2$$

abcdefg ∈ I⁽³⁾ \ I² (each order two partial of abcdefg is divisible by two generators of I)

•
$$\rho(I) = \sup\{\frac{s}{r} : I^{(s)} \not\subset I^r\} = 3/2$$

•
$$\widehat{\rho}(I) = \sup\{\frac{s}{r} : I^{(st)} \not\subset I^{rt} \text{ for all } t \gg 0\} = 9/7!$$

abcdefg ∈ I⁽³⁾ \ I² (each order two partial of abcdefg is divisible by two generators of I)

•
$$\rho(I) = \sup\{\frac{s}{r} : I^{(s)} \not\subset I^r\} = 3/2$$

•
$$\widehat{\rho}(I) = \sup\{\frac{s}{r} : I^{(st)} \not\subset I^{rt} \text{ for all } t \gg 0\} = 9/7!$$

 $I^{(3t)} \subset I^{2t}$ for infinitely many $t \in \mathbb{Z}_{>0}$

 $\overline{I} := \{ f : \text{ there is } c \neq 0 \in S \text{ s.t. } cf^k \in I^k \text{ for infinitely many } k \in \mathbb{Z}_{>0} \}$

 $\overline{I}:=\{f: \text{ there is } c
eq 0\in S \text{ s.t. } cf^k\in I^k \text{ for infinitely many } k\in \mathbb{Z}_{>0}\}$

If I is a monomial ideal and m is a monomial,

$$m \in \overline{I} \iff m^k \in I^k$$
 for some $k \in \mathbb{Z}_{>0}$

 $\overline{I} := \{f : \text{ there is } c \neq 0 \in S \text{ s.t. } cf^k \in I^k \text{ for infinitely many } k \in \mathbb{Z}_{>0}\}$

If I is a monomial ideal and m is a monomial,

$$m\in \overline{I}\iff m^k\in I^k$$
 for some $k\in\mathbb{Z}_{>0}$

Fano plane ideal: $I = \langle abc, adg, aef, bdf, beg, cde, cfg \rangle$

 $\overline{I} := \{f : \text{ there is } c \neq 0 \in S \text{ s.t. } cf^k \in I^k \text{ for infinitely many } k \in \mathbb{Z}_{>0}\}$

If I is a monomial ideal and m is a monomial,

$$m\in \overline{I}\iff m^k\in I^k$$
 for some $k\in\mathbb{Z}_{>0}$

Fano plane ideal: $I = \langle abc, adg, aef, bdf, beg, cde, cfg \rangle$

- m = abcdefg
- $m^3 \in I^7$ (take product of all generators)
- So $m^3 \in I^6 \implies m \in \overline{I^2}$ (but $m \notin I^2$!)

Asymptotic resurgence via integral closures [-FMS '19] If *I* is an ideal of $S = \mathbb{K}[x_0, \dots, x_n]$ then $\widehat{\rho}(I) = \sup\{\frac{s}{r} : I^{(s)} \not\subset \overline{I^r}\}$ Asymptotic resurgence via integral closures [-FMS '19] If *I* is an ideal of $S = \mathbb{K}[x_0, \dots, x_n]$ then $\widehat{\rho}(I) = \sup\{\frac{s}{r} : I^{(s)} \not\subset \overline{I^r}\}$ $= \inf\{q \in \mathbb{Q} : I^{(\lceil qr \rceil)} \subset \overline{I^r} \text{ for all } r \in \mathbb{Z}_{>0}\}$ Asymptotic resurgence via integral closures [-FMS '19] If I is an ideal of $S = \mathbb{K}[x_0, \dots, x_n]$ then $\widehat{\rho}(I) = \sup\{\frac{s}{r} : I^{(s)} \not\subset \overline{I^r}\}$ $= \inf\{q \in \mathbb{Q} : I^{(\lceil qr \rceil)} \subset \overline{I^r} \text{ for all } r \in \mathbb{Z}_{>0}\}$

• Recall: $\widehat{\rho}(I) = \sup\{\frac{s}{r} : I^{(st)} \not\subset I^{rt} \text{ for all } t \gg 0\}$

Asymptotic resurgence via integral closures [-FMS '19] If I is an ideal of $S = \mathbb{K}[x_0, \dots, x_n]$ then $\widehat{\rho}(I) = \sup\{\frac{s}{r} : I^{(s)} \not\subset \overline{I^r}\}$ $= \inf\{q \in \mathbb{Q} : I^{(\lceil qr \rceil)} \subset \overline{I^r} \text{ for all } r \in \mathbb{Z}_{>0}\}$

- Recall: $\hat{\rho}(I) = \sup\{\frac{s}{r} : I^{(st)} \not\subset I^{rt} \text{ for all } t \gg 0\}$
- Theorem holds in *analytically unramified* rings (just need finiteness of integral closures)

Suppose *I* is an ideal of $S = \mathbb{K}[x_0, \ldots, x_n]$ and $\hat{\rho}(I) < \rho(I)$. Then there are positive integers *M*, *N* so that

$$\rho(I) = \max_{1 \le s \le N, 1 \le r \le M} \left\{ \frac{s}{r} : I^{(s)} \not\subset I^r \right\}.$$

Suppose *I* is an ideal of $S = \mathbb{K}[x_0, \ldots, x_n]$ and $\hat{\rho}(I) < \rho(I)$. Then there are positive integers *M*, *N* so that

$$\rho(I) = \max_{1 \le s \le N, 1 \le r \le M} \left\{ \frac{s}{r} : I^{(s)} \not\subset I^r \right\}.$$

• Can be made computationally effective in some cases.

Suppose *I* is an ideal of $S = \mathbb{K}[x_0, ..., x_n]$ and $\hat{\rho}(I) < \rho(I)$. Then there are positive integers *M*, *N* so that

$$\rho(I) = \max_{1 \le s \le N, 1 \le r \le M} \left\{ \frac{s}{r} : I^{(s)} \not\subset I^r \right\}.$$

- Can be made computationally effective in some cases.
- If $\widehat{\rho}(I) < \rho(I)$ then $\rho(I)$ is rational.

Suppose *I* is an ideal of $S = \mathbb{K}[x_0, \ldots, x_n]$ and $\widehat{\rho}(I) < \rho(I)$. Then there are positive integers *M*, *N* so that

$$\rho(I) = \max_{1 \le s \le N, 1 \le r \le M} \left\{ \frac{s}{r} : I^{(s)} \not\subset I^r \right\}.$$

- Can be made computationally effective in some cases.
- If $\widehat{\rho}(I) < \rho(I)$ then $\rho(I)$ is rational.

Theorem B [-D '20]

If the symbolic Rees algebra of an ideal is finitely generated, then $\rho(I)$ is rational.

For instance, the resurgence of monomial ideals is rational.

If I is a radical ideal of codimension c in $S = \mathbb{K}[x_0, \ldots, x_n]$, then $I^{(cr)} \subset I^r$ for every $r \ge 1$.

If I is a radical ideal of codimension c in $S = \mathbb{K}[x_0, \ldots, x_n]$, then $I^{(cr)} \subset I^r$ for every $r \ge 1$.

Harbourne's Conjecture

 $I^{(cr-c+1)} \subset I^r$ for every $r \geq 1$.

If I is a radical ideal of codimension c in $S = \mathbb{K}[x_0, \ldots, x_n]$, then $I^{(cr)} \subset I^r$ for every $r \ge 1$.

Harbourne's Conjecture

 $I^{(cr-c+1)} \subset I^r$ for every $r \geq 1$.

Is true for:

• Squarefree monomial ideals

If I is a radical ideal of codimension c in $S = \mathbb{K}[x_0, \ldots, x_n]$, then $I^{(cr)} \subset I^r$ for every $r \ge 1$.

Harbourne's Conjecture

 $I^{(cr-c+1)} \subset I^r$ for every $r \geq 1$.

Is true for:

- Squarefree monomial ideals
- \bullet ideals of general points in \mathbb{P}^2 [HH '13] and \mathbb{P}^3 [D '15]

If I is a radical ideal of codimension c in $S = \mathbb{K}[x_0, \ldots, x_n]$, then $I^{(cr)} \subset I^r$ for every $r \ge 1$.

Harbourne's Conjecture

 $I^{(cr-c+1)} \subset I^r$ for every $r \geq 1$.

Is true for:

- Squarefree monomial ideals
- \bullet ideals of general points in \mathbb{P}^2 [HH '13] and \mathbb{P}^3 [D '15]

If *I* is the ideal of the intersection points of a certain line arrangement in \mathbb{P}^2 (*c* = 2), then $I^{(4)} \subset I^2$ (uniform containment) but $I^{(2\cdot 2-2+1=3)} \not\subset I^2$.

If *I* is the ideal of the intersection points of a certain line arrangement in \mathbb{P}^2 (*c* = 2), then $I^{(4)} \subset I^2$ (uniform containment) but $I^{(2\cdot 2-2+1=3)} \not\subset I^2$.

Several other examples followed.

If *I* is the ideal of the intersection points of a certain line arrangement in \mathbb{P}^2 (*c* = 2), then $I^{(4)} \subset I^2$ (uniform containment) but $I^{(2\cdot 2-2+1=3)} \not\subset I^2$.

Several other examples followed. (For many of these $\hat{\rho}(I) < \rho(I)$.)

If *I* is the ideal of the intersection points of a certain line arrangement in \mathbb{P}^2 (*c* = 2), then $I^{(4)} \subset I^2$ (uniform containment) but $I^{(2\cdot 2-2+1=3)} \not\subset I^2$.

Several other examples followed. (For many of these $\hat{\rho}(I) < \rho(I)$.)

Stable Harbourne conjecture: Grifo '20

 $I^{(cr-c+1)} \subset I^r$ for all $r \gg 0$.

• By uniform containment, if $\operatorname{codim}(I) = c$ then $\rho(I) \leq c$.

- By uniform containment, if $\operatorname{codim}(I) = c$ then $\rho(I) \leq c$.
- There are families of ideals whose resurgence is arbitrarily close to the codimension.

- By uniform containment, if $\operatorname{codim}(I) = c$ then $\rho(I) \leq c$.
- There are families of ideals whose resurgence is arbitrarily close to the codimension.
- Lampa-Baczyńska and Malara '15:

$$I = \bigcap_{0 \le i < j \le n} \langle x_i, x_j \rangle = \langle \prod_{i \ne j} x_i : j = 0, \dots, n \rangle$$

has $\rho(I) = 2 - \frac{2}{n+1}$.

- By uniform containment, if $\operatorname{codim}(I) = c$ then $\rho(I) \leq c$.
- There are families of ideals whose resurgence is arbitrarily close to the codimension.
- Lampa-Baczyńska and Malara '15:

$$I = \bigcap_{0 \le i < j \le n} \langle x_i, x_j \rangle = \langle \prod_{i \ne j} x_i : j = 0, \dots, n \rangle$$

has $\rho(I) = 2 - \frac{2}{n+1}$.

• There is no example of a radical ideal with resurgence *equal* to its codimension.

- By uniform containment, if $\operatorname{codim}(I) = c$ then $\rho(I) \leq c$.
- There are families of ideals whose resurgence is arbitrarily close to the codimension.
- Lampa-Baczyńska and Malara '15:

$$I = \bigcap_{0 \le i < j \le n} \langle x_i, x_j \rangle = \langle \prod_{i \ne j} x_i : j = 0, \dots, n \rangle$$

has $\rho(I) = 2 - \frac{2}{n+1}$.

- There is no example of a radical ideal with resurgence *equal* to its codimension.
- If ρ(I) < c then I satisfies the stable Harbourne conjecture (and more!)
- Follows quickly from Theorem A (AR<R) that ρ(I) < c is implied by ρ̂(I) < c.

Theorem C [-D '20]

Suppose $I \subset \mathbb{K}[x_0, \cdots, x_n]$ is radical with $\operatorname{codim}(I) = c$. If $I^{(rc-c)} \subset \overline{I^r}$ for some $r \in \mathbb{Z}_{>0}$ then $\widehat{\rho}(I) \leq c - \frac{1}{r}$. In particular, I has expected resurgence.

Theorem C [-D '20]

Suppose $I \subset \mathbb{K}[x_0, \cdots, x_n]$ is radical with $\operatorname{codim}(I) = c$. If $I^{(rc-c)} \subset \overline{I^r}$ for some $r \in \mathbb{Z}_{>0}$ then $\widehat{\rho}(I) \leq c - \frac{1}{r}$. In particular, I has expected resurgence.

A containment for squarefree monomial ideals [-D '20]

If $I \subset \mathbb{K}[x_0, \ldots, x_n]$ is a squarefree monomial ideal of codimension c, then $I^{(rc-c)} \subset I^r$ for $r \ge n+1$. In particular, squarefree monomial ideals have expected resurgence.

Theorem C [-D '20]

Suppose $I \subset \mathbb{K}[x_0, \dots, x_n]$ is radical with $\operatorname{codim}(I) = c$. If $I^{(rc-c)} \subset \overline{I^r}$ for some $r \in \mathbb{Z}_{>0}$ then $\widehat{\rho}(I) \leq c - \frac{1}{r}$. In particular, I has expected resurgence.

A containment for squarefree monomial ideals [-D '20]

If $I \subset \mathbb{K}[x_0, \ldots, x_n]$ is a squarefree monomial ideal of codimension c, then $I^{(rc-c)} \subset I^r$ for $r \ge n+1$. In particular, squarefree monomial ideals have expected resurgence.

Question

Suppose *I* is a radical ideal in $\mathbb{K}[x_0, \ldots, x_n]$. Is $I^{(rc-c)} \subset \overline{I^r}$ satisfied for some $r \gg 0$? If so, can *r* be chosen *uniformly* for all radical ideals? Can we drop the assumption that *I* is radical?

Thank you!