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Zariski-Nagata Theorem

Suppose [ is the radical ideal of S defining the variety X = V/(/) in
P". Then /() consists of all polynomials which vanish to order at
least s along X.
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Given an ideal | C S =K[xp, ..., Xs]:

@ Regular powers |" are ‘easy’ to describe algebraically
o Symbolic powers 1(5) are ‘easy’ to describe geometrically

@ How do they compare?
Easily verified that /" C /() if and only if r > s.

Containment Problem

For which pairs of positive integers (s, r) do we have /(5) c [7?
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Containment examples

Example 1: ldeal of rank 1 matrices

b ¢
M= e f |,P=h(M)CK]a,...,i].
h i

R Q o

e Partial derivatives of det(M) are 2 x 2 minors of M
o det(M) € P(2)\ p?

e So P(2) £ p2

o Can check P c P2,
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Containment examples

Example 2: Ideal of 3 points in P?

I =(xy,xz,yz) = (x,y) N (x,z) N (y,z) C K[x,y, 2]

o (xyz)® € I*K) (mixed partials of (xyz)?* of order 4k — 1 are
divisible by xy, xz, or yz)
o (xyz)%< € I3F but
° (Xyz)2k ¢ |3k+1
So [(4K) ¢ [3k+1 pyt [(4k) < 3k
o More precisely: 1" = I(") 0 M?" where M = (x,y, z)
o /&) CI"if and only if s > 3r.
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Ein-Lazarsfeld-Smith ‘01, Hochster-Huneke '02, Ma-Schwede ‘17:

Uniform containment

Suppose S = K[xp, . .., xn] (or more generally a regular ring).
e If I C S is radical of codimension c, then /(") c |’

o If | defines a non-empty variety in P" then /(")  |”.

For ‘most’ ideals, ¢ can be replaced by a smaller number.
I'=(xy,xz,yz) = (x,y) N (x,2) N (y,2)

e Uniform containment: /29 c |

e Previous slide: /(14/371) < |
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Resurgence:

p(l) :=sup{: 1) ¢ 17}
=inf{geQ:IUaD) I forall r € Zg}
If I is an ideal of codimension ¢, uniform containment
= p(l) <c.

o | =(xy,xz,yz) = (x,y) N (x,z) N (y,2)
o p(I) =4/3.
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Asymptotic resurgence

Refinement introduced by Guardo, Harbourne, and Van Tuyl ‘13:
Asymptotic resurgence:
p(l) :=sup{s: 16 ¢ It for all t > 0}
= inf{g € Q: Ia]) C I for infinitely many r € Z-¢}
I'=(xy,xz,yz) = (x,y) N (x,2) N (y,2)
p(l) =4/3 = p(I).

In general p(1) < p(I) (strict inequality may occur [DHSSTG'14],
but these examples are rare!).
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Asymptotic resurgence < Resurgence [DFMS ‘19|

Fano plane Edge ideal
c
b d _
| = (abc, adg, aef , bdf , beg, cde, cfg)
a f e

o abcdefg € 1)\ 12 (each order two partial of abcdefg is
divisible by two generators of /)

o p(I) =sup{3: 1) ¢ 1"} = 3/2
o p(1) =sup{Z: 16t ¢ | for all t > 0} =9/7!
13t) = 12t for infinitely many t € Zsg
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Integral closures

Integral closure of | C S = K|xp, ..., xy] is:
T:={f: thereis c#£0 € S s.t. cf* € I for infinitely many k € Z-q}
If / is a monomial ideal and m is a monomial,

mel < mke I for some k € Z-g

Fano plane ideal: | = (abc, adg, aef, bdf, beg, cde, cfg)
@ m = abcdefg
o m> € I (take product of all generators)
e Som*el® = me 2 (but m¢ /3
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Asymptotic resurgence and integral closures

Asymptotic resurgence via integral closures [-FMS '19]

If I is an ideal of S = K]xp, ..., xs] then

A =sup{2: 1) ¢ T}
=inf{qg € Q: /I C T for all r € Zo}

o Recall: p(/) = sup{2: 1) ¢ I for all t > 0}
@ Theorem holds in analytically unramified rings (just need
finiteness of integral closures)
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When asymptotic resurgence is less than resurgence

Theorem A (AR<R) [-D ‘20]

Suppose [ is an ideal of S = K[xo, ..., xs] and p(/) < p(I). Then
there are positive integers M, N so that

o(l) = max {E: I(s)gZ/’}.

1<s<N,1<r<M Lr

@ Can be made computationally effective in some cases.
o If p(1) < p(I) then p(!) is rational.

Theorem B [-D ‘20]

If the symbolic Rees algebra of an ideal is finitely generated, then
p(1) is rational.

For instance, the resurgence of monomial ideals is rational.
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Counterexamples to Harbourne's conjecture

Dumnicki-Szemberg-Tutaj-Gasiriska ‘13

If | is the ideal of the intersection points of a certain line
arrangement in P2 (¢ = 2), then /() C /2 (uniform containment)
but /(22—2+1=3) ¢ 12

Several other examples followed. (For many of these p(/) < p(/).)

. ‘

Stable Harbourne conjecture: Grifo ‘20

jler—c+1) = 7 for all r > 0.
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Expected resurgence

By uniform containment, if codim(/) = ¢ then p(/) < c.

@ There are families of ideals whose resurgence is arbitrarily

close to the codimension.

Lampa-Baczynska and Malara ‘15:

| = m X,,XJ HX/ Jj=0,. >

0<i<j<n i#j

has p(1) =2 — n+1
There is no example of a radical ideal with resurgence equal
to its codimension.

If p(/) < c then [ satisfies the stable Harbourne conjecture
(and more!)

Follows quickly from Theorem A (AR<R) that p(/) < c is
implied by p(/) < c.
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Inspired by recent results of Grifo-Huneke-Mukundan [‘19, ‘20]:

Theorem C [-D ‘20]

Suppose | C K[xp, - - - , xp] is radical with codim(/) = c. If

1(re=€) < I7 for some r € Zsg then p(/) < c — L. In particular, /

r
has expected resurgence.

A containment for squarefree monomial ideals [-D ‘20]

If I € K[xo,...,xXn] is a squarefree monomial ideal of codimension
c, then 1€=S) < |" for r > n+ 1. In particular, squarefree
monomial ideals have expected resurgence.

Question

Suppose / is a radical ideal in K[xg, ..., x,]. Is /(<=9 c 7
satisfied for some r > 07 If so, can r be chosen uniformly for all
radical ideals? Can we drop the assumption that / is radical?



Thank you!



