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Symbolic Powers

S = K[x0, · · · , xn], I ⊂ S an ideal, K algebraically closed

Symbolic Power:

I (s) =
⋂

P∈Ass(I )
(I sSP) ∩ S

Zariski-Nagata Theorem

Suppose I is the radical ideal of S defining the variety X = V (I ) in
Pn. Then I (s) consists of all polynomials which vanish to order at
least s along X .

I (s) =

{
f :

∂f

∂xα
∈ I for all |α| ≤ s − 1

}
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Comparing regular and symbolic powers

Given an ideal I ⊂ S = K[x0, . . . , xn]:

Regular powers I r are ‘easy’ to describe algebraically

Symbolic powers I (s) are ‘easy’ to describe geometrically

How do they compare?

Easily verified that I r ⊂ I (s) if and only if r ≥ s.

Containment Problem

For which pairs of positive integers (s, r) do we have I (s) ⊂ I r?
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Containment examples

Example 1: Ideal of rank 1 matrices

M =

 a b c
d e f
g h i

 ,P = I2(M) ⊂ K[a, . . . , i ].

Partial derivatives of det(M) are 2× 2 minors of M

det(M) ∈ P(2) \ P2

So P(2) 6= P2

Can check P(3) ⊂ P2.
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Containment examples

Example 2: Ideal of 3 points in P2

I = (xy , xz , yz) = (x , y) ∩ (x , z) ∩ (y , z) ⊂ K[x , y , z ]

(xyz)2k ∈ I (4k) (mixed partials of (xyz)2k of order 4k − 1 are
divisible by xy , xz , or yz)

(xyz)2k ∈ I 3k but

(xyz)2k /∈ I 3k+1

So I (4k) 6⊂ I 3k+1 but I (4k) ⊂ I 3k

More precisely: I r = I (r) ∩M2r where M = 〈x , y , z〉
I (s) ⊂ I r if and only if s ≥ 4

3 r .
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Uniform containment

Ein-Lazarsfeld-Smith ‘01, Hochster-Huneke ’02, Ma-Schwede ‘17:

Uniform containment

Suppose S = K[x0, . . . , xn] (or more generally a regular ring).

If I ⊂ S is radical of codimension c , then I (cr) ⊂ I r .

If I defines a non-empty variety in Pn then I (nr) ⊂ I r .

For ‘most’ ideals, c can be replaced by a smaller number.
I = (xy , xz , yz) = (x , y) ∩ (x , z) ∩ (y , z)

Uniform containment: I (2r) ⊂ I r

Previous slide: I (d4/3·re) ⊂ I r
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Resurgence

Introduced by Bocci and Harbourne ‘10:

Resurgence:

ρ(I ) := sup{ sr : I (s) 6⊂ I r}

= inf{q ∈ Q : I (dqre) ⊂ I r for all r ∈ Z>0}

If I is an ideal of codimension c, uniform containment
=⇒ ρ(I ) ≤ c .

I = (xy , xz , yz) = (x , y) ∩ (x , z) ∩ (y , z)

ρ(I ) = 4/3.
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Asymptotic resurgence

Refinement introduced by Guardo, Harbourne, and Van Tuyl ‘13:

Asymptotic resurgence:

ρ̂(I ) := sup{ sr : I (st) 6⊂ I rt for all t � 0}

= inf{q ∈ Q : I (dqre) ⊂ I r for infinitely many r ∈ Z>0}

I = (xy , xz , yz) = (x , y) ∩ (x , z) ∩ (y , z)

ρ̂(I ) = 4/3 = ρ(I ).

In general ρ̂(I ) ≤ ρ(I ) (strict inequality may occur [DHSSTG‘14],
but these examples are rare!).
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Asymptotic resurgence < Resurgence [DFMS ‘19]

Fano plane

Edge ideal

a

b

c

d

ef

g

I = 〈abc, adg , aef , bdf , beg , cde, cfg〉

abcdefg ∈ I (3) \ I 2 (each order two partial of abcdefg is
divisible by two generators of I )

ρ(I ) = sup{ sr : I (s) 6⊂ I r} = 3/2

ρ̂(I ) = sup{ sr : I (st) 6⊂ I rt for all t � 0} = 9/7!

I (3t) ⊂ I 2t for infinitely many t ∈ Z>0
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Integral closures

Integral closure of I ⊂ S = K[x0, . . . , xn] is:

I := {f : there is c 6= 0 ∈ S s.t. cf k ∈ I k for infinitely many k ∈ Z>0}

If I is a monomial ideal and m is a monomial,

m ∈ I ⇐⇒ mk ∈ I k for some k ∈ Z>0

Fano plane ideal: I = 〈abc, adg , aef , bdf , beg , cde, cfg〉
m = abcdefg

m3 ∈ I 7 (take product of all generators)

So m3 ∈ I 6 =⇒ m ∈ I 2 (but m /∈ I 2!)
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Asymptotic resurgence and integral closures

Asymptotic resurgence via integral closures [-FMS ‘19]

If I is an ideal of S = K[x0, . . . , xn] then

ρ̂(I ) = sup{ sr : I (s) 6⊂ I r}

= inf{q ∈ Q : I (dqre) ⊂ I r for all r ∈ Z>0}

Recall: ρ̂(I ) = sup{ sr : I (st) 6⊂ I rt for all t � 0}
Theorem holds in analytically unramified rings (just need
finiteness of integral closures)
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When asymptotic resurgence is less than resurgence

Theorem A (AR<R) [-D ‘20]

Suppose I is an ideal of S = K[x0, . . . , xn] and ρ̂(I ) < ρ(I ). Then
there are positive integers M,N so that

ρ(I ) = max
1≤s≤N,1≤r≤M

{s
r

: I (s) 6⊂ I r
}
.

Can be made computationally effective in some cases.

If ρ̂(I ) < ρ(I ) then ρ(I ) is rational.

Theorem B [-D ‘20]

If the symbolic Rees algebra of an ideal is finitely generated, then
ρ(I ) is rational.

For instance, the resurgence of monomial ideals is rational.
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If the symbolic Rees algebra of an ideal is finitely generated, then
ρ(I ) is rational.

For instance, the resurgence of monomial ideals is rational.



A conjecture of Harbourne refining uniform containment

Uniform containment

If I is a radical ideal of codimension c in S = K[x0, . . . , xn], then
I (cr) ⊂ I r for every r ≥ 1.

Harbourne’s Conjecture

I (cr−c+1) ⊂ I r for every r ≥ 1.

Is true for:

Squarefree monomial ideals

ideals of general points in P2 [HH ‘13] and P3 [D ‘15]
...
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Counterexamples to Harbourne’s conjecture

Dumnicki-Szemberg-Tutaj-Gasińska ‘13

If I is the ideal of the intersection points of a certain line
arrangement in P2 (c = 2), then I (4) ⊂ I 2 (uniform containment)
but I (2·2−2+1=3) 6⊂ I 2.

Several other examples followed. (For many of these ρ̂(I ) < ρ(I ).)

Stable Harbourne conjecture: Grifo ‘20

I (cr−c+1) ⊂ I r for all r � 0.
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Expected resurgence

By uniform containment, if codim(I ) = c then ρ(I ) ≤ c .

There are families of ideals whose resurgence is arbitrarily
close to the codimension.

Lampa-Baczyńska and Malara ‘15:

I =
⋂

0≤i<j≤n
〈xi , xj〉 = 〈

∏
i 6=j

xi : j = 0, . . . , n〉

has ρ(I ) = 2− 2
n+1 .

There is no example of a radical ideal with resurgence equal
to its codimension.

If ρ(I ) < c then I satisfies the stable Harbourne conjecture
(and more!)

Follows quickly from Theorem A (AR<R) that ρ(I ) < c is
implied by ρ̂(I ) < c.
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Inspired by recent results of Grifo-Huneke-Mukundan [‘19, ‘20]:

Theorem C [-D ‘20]

Suppose I ⊂ K[x0, · · · , xn] is radical with codim(I ) = c . If
I (rc−c) ⊂ I r for some r ∈ Z>0 then ρ̂(I ) ≤ c − 1

r . In particular, I
has expected resurgence.

A containment for squarefree monomial ideals [-D ‘20]

If I ⊂ K[x0, . . . , xn] is a squarefree monomial ideal of codimension
c , then I (rc−c) ⊂ I r for r ≥ n + 1. In particular, squarefree
monomial ideals have expected resurgence.

Question

Suppose I is a radical ideal in K[x0, . . . , xn]. Is I (rc−c) ⊂ I r

satisfied for some r � 0? If so, can r be chosen uniformly for all
radical ideals? Can we drop the assumption that I is radical?
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Thank you!


