Dwight Anderson Williams II, Postdoc at Iowa State University

06 October 2020 Alg & Goo Servinor A From Lie algebrus to Lie superalgebrus detinitions classice) examples toals super - explore varians entry points to studying Lie algebras - set up talk#2 - Math in community

Where to begin? algebraically Choose your Savaste vector space **James E. Humphreys** Introduction to Lie Algebras and Representation V = [K[x] as a lk-vector space [k field Theory DIR W->RIX1 2(1)=> lineas transformation T. V>V} find the 2007) is a lk-vector space AND function composition on 2007) is a generally non-commutative product is an element L(RW) (DM - MD)(f) =So $X \times Y$ in $\mathcal{L}(V) = XY - YX$ in $\mathcal{L}(V) = \delta_{i}$

Now let $V = \mathbb{R}^{s}$ Then we can encode 2(7) 23×3 matrices with entries in TR3 L(T) = Mat (3, R) as vector spaces Still, Mat (3, R) has a generally non-commutative product A & B in Mat (3, R) => AB-BA in Mat (3, R) Commutator R has its own product - cross product with properties. bilinearity non-associationity alternativity identity

Destivition & his algebra Fraktur & vector space over field IF

$$\sum [\alpha x + \gamma, \beta v + \omega] = \alpha \beta [x, v] + \alpha [x, w] + \beta [\gamma, v] + [\gamma, w]$$

V,W,K,Y Vectors & x, B scalars

Definition 3.3.1. A Lie algebra is a pair $(\mathfrak{g}, [,])$ such that $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ is a bilinear product (called the *Lie bracket*) on \mathfrak{g} and the following properties hold for all vectors $x, y, z \in \mathfrak{g}$. (3.4) [x, y] = -[y, x]. $\langle \Longrightarrow [\chi, \chi] = 0$, after which [x, [y, z]] = [[x, y], z] + [y, [x, z]], Jacobi therefore

Another Look

more geometrically (invariantly)	Hans Samelson
Forms on vector space	Notes on
give geometry	Lie Algebras
certain maps take points/vectors	Springer Verlage
in general linear position to	Graduate Texts
points to general linear position	in Mathematics
So we can gsk given some for	Roe Goodman - Nolan R. Wallach Symmetry, Representations, and Invariants
$\beta: \forall x \forall \rightarrow F$	20 Springer - 20 -20 -20 -20 -20 -20 -20 -20 -
Which invertible transformations preserve \mathcal{H}	ne torm B
$\{A \in GL(\nabla) \mid \mathcal{B}(Ax, Ay) = \mathcal{B}(x, y)\}$), for all vectors x by }

Now were talking matrix groups for V= F, say C							
Name	Notation		Defining C	Condition		We can encode	
Special linear group	$\operatorname{SL}(\mathbb{C}^n)$	SL(n)	Preserves oriented volume	$\det(A) = 1$		our torns into matrices	
Symplectic group	$\operatorname{Sp}(\mathbb{C}^{2n})$	$\operatorname{Sp}(2n)$	Preserves symplectic form	$A^T J_{2n}^{skew} A = J_{2n}^{skew}$		$J_{2n}^{skew} = \begin{bmatrix} 2n \times 2n \\ 0 & I_n \\ -I_n & 0 \end{bmatrix}, \dim(V) = 2n, I_n \text{ the } n \times n \text{ identity matrix}$	
Orthogonal group	$O(\mathbb{C}^n)$	O(<i>n</i>)	Preserves nonsingular quadratic form	$A^T J_n^{sym} A = J_n^{sym}$		$J_{2n}^{sym} = \begin{bmatrix} 0 & I_n \\ \hline I_n & 0 \end{bmatrix}, \dim(V) = 2n, \text{ and}$	
Special or- thogonal group	$SO(\mathbb{C}^n)$	SO(n)	Preserves nonsingular quadratic form and oriented volume	$A^T J_n^{sym} A = J_n^{sym}$ $\det(A) = 1$		$J_{2n+1}^{sym} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & I_n \\ 0 & I_n & 0 \end{bmatrix}, \dim(V) = 2n+1$	

In particular me have examples & Lie groups

roots by polynomials

Finite

Jalois

groups

aduate Texts

Peter J. Olver

Applications of Lie Groups to **Differential** Equations Second Edition

Springer

Solutions Of differential equations

continuous transformation

Working over C Exponentiation shows up in colving = (K1) Ordinary differential equations X1 = (X1) X1 = (X1) (d . . -> e exposedial parameter (n×n identity when k=0) So which metrices map to Sp(n), O(n), SO(n)

Some Lie digdons from Lie grays
Definition 3.3.21. The spapletic lie algebra
$$\mathfrak{sp}(2n) \subseteq \mathfrak{gl}(2n)$$
 is the set of $20 \times 2n$
matrices M such that $\underline{dg}^{(m)}_{2m}M + M^T \underline{dg}^{(m)}_{2m} = 0$. We can express each element M of
 $\mathfrak{sp}(2n)$ as a block matrix with $n \times n$ matrices A, B, C :

$$M = \begin{bmatrix} A \\ C \\ -A^T \end{bmatrix}$$

$$\mathfrak{sp}(A) = \mathbb{C} \oplus \mathbb{O} \oplus \mathbb{C} \oplus \mathbb{C}$$

SUPER SPACE - careful. I'm not a geometre, not a phyricist Super space means super vector space V = Vever @ Vode = Vo @ Vi The gruded vector spice $C^{3} = C^{T} \oplus C^{2} \longrightarrow C^{3} \longrightarrow C^{3$ ex In the category of super vector spaces, $\int_{-2}^{2} I a = \int_{-2}^{0} O^{13} = \int_{-2}^{1} I a = \int_{-2}^{0} I a = \int_{-2}^{0}$

Parity (V: Super vector space) parity map $P: \overline{V} \sqcup \overline{V} \rightarrow \mathbb{Z}_{2}$ homogenent $v \mapsto \overline{2}, if v \in \overline{V_{2}} \backslash 0 \rangle$ komogenent $v \mapsto \overline{2}, if v \in \overline{V_{2}} \backslash 0 \rangle$ f(x) = |x|Actinition & Lic superalgebra Begin with a super vector opace V General linear lie superals super care (cat of super unterspices) Any linear may I on V morphisms preserve parity decomposes as the unique sum by a parity-preserving map nomity C3 ~ C3 Ticzla ~ Czla with a pointy - reversing map [2] = [0] T(even) seven