Dwight Anderson Williams II, Postdoc at Iowa State University
06 actolas 2020

* Alg $\&$ Geo Seminar \forall

From hie algebras to hie superalgebons
definitions examples

Coals

- explore various entry points to studying Lie ackelonas
- set up talk \#2
- math in community

Where to begin? algebraically
Choose your facante vector space

$$
V=\mathbb{K}[x] \text { as a } \mathbb{K} \text {-vetorspace }
$$

$$
\mathbb{k} \text { field }
$$

$\mathcal{I}(T)=\{$ linear tmantomentiar $T, \nabla \rightarrow \nabla\}$
$\mathcal{L}(\bar{V})$ is a \mathbb{k}-vendor spice
AND function composition on $\mathcal{L}(T)$

James E. Humphreys Introduction to
Lie Algebras and Representation
Theory Theory
\qquad
D. $\mathbb{R}[x \rightarrow \mathbb{R}[x]$ $f \mapsto \frac{d f}{d x}$ is ancelement $\mathcal{L}^{g}(\mathbb{R}[x])$
is a generally ren-commotative product

$$
\xrightarrow[D(x f)-x \frac{d f}{d x}=]{(D M-M D)(f)}=f
$$

So $X X_{x} Y_{\text {in }} \mathcal{L}(V) \stackrel{\text { den }}{\Rightarrow} X Y-Y X$ in $\mathcal{L}(F) \backslash\{0\}$

Nav let $V=\mathbb{R}^{3}$
Then we can "encode" $\mathcal{L}(-J)$
as $\{3 \times 3$ matrices with entries in $\mathbb{R}\}$
$\mathcal{L}(\nabla) \cong \operatorname{Mat}(3, \mathbb{R})$ as vector spaces
choice of bans

Stol, Mat $(3, R)$ has a generally no-commintivive product $A \star B$ in $\operatorname{Mat}(3, R) \Rightarrow \underbrace{A B-B A}_{\text {Commutation }}$ in $\operatorname{Mat}(3, R)$
BuT
\mathbb{R}^{3} has its own product - cross product

Definition of hic alqebor Fraktur 8 . vector space over food \mathbb{F}

$$
[\alpha x+y, \beta v v w]=\alpha \beta[x, v]+\alpha[x, w]+\beta[y, v]+[y, w]
$$

vi,, , y vector $k \alpha, \beta$ salas
Definition 3.3.1. A Lie algebra is a pair $(\mathfrak{g},[]$,$) such that [\cdot, \cdot]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ is a $\underbrace{\text { bilinear product (called the Lie bracket) on } \mathfrak{g} \text { and the following properties hold for all }}$ vectors $x, y, z \in \mathfrak{g}$.
$\operatorname{char}(\mathbb{K}) \neq 2$

$$
\begin{equation*}
[x,[y, z]]=[[x, y], z]+[y,[x, z]]_{\mathrm{J}} \text { Jacobi identity } \tag{3.4}
\end{equation*}
$$

Another look
more geometrically (invariantly)
forms on vector space
give geometry
certain maps take points/vectors in general linear position to points to general linear position

So we car ask... given some form Representations,

$$
\beta: \nabla \times V \rightarrow F
$$

which invertible trunstormations preserve the form β

$$
\{A \in G h(\sim J) \mid \beta(A x, A y)=B(x, y) \text {, for all vector } x \not x y\}
$$

Wait...

 now were talking matrix group for $\bar{J} \cong \mathbb{E}^{n}$, say \mathbb{C}^{n}

```
\[
J_{2 n}^{\text {skew }}=\left[\begin{array}{c|c}
0 & I_{n} \\
\hline-I_{n} & 0
\end{array}\right], \operatorname{dim}(V)=2 n, \quad I_{n} \text { the } n \times n \text { identity matrix }
\]
```

$$
J_{2 n}^{s y m}=\left[\begin{array}{c|c}
0 & I_{n} \\
\hline I_{n} & 0
\end{array}\right], \operatorname{dim}(V)=2 n, \text { and }
$$

$$
J_{2 n+1}^{s y m}=\left[\begin{array}{c|c|c}
1 & 0 & 0 \\
\hline 0 & 0 & I_{n} \\
\hline 0 & I_{n} & 0
\end{array}\right], \operatorname{dim}(V)=2 n+1
$$

In particular wine have examples of Lie groups

working over \mathbb{C}
Exponentintion shows up in oolving

$$
\left[\begin{array}{c}
x_{2} \\
x_{2} \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]\left\{\begin{array}{l}
\text { ordinar diffortal equations }
\end{array}\right.
$$

exp. $\underline{M a n(n)} \rightarrow G L(n)$

$$
\begin{aligned}
& \text { for a } \\
& \text { parameto } t \text { (nen idedity } y \text { den } k=0)
\end{aligned}
$$

So winch intries map to $S_{p}(n), O(n)$, SO(n)

Sorre Lie algebras from Lie groups
Definition 3.3.21. The symplectic Lie algebra $\mathfrak{s p}(2 n) \subset \mathfrak{g l}(2 n)$ is the set of $2 n \times 2 n$ $\mathfrak{s p}(2 n)$ as a block matrix with $n \times n$ matrices A, B, C :
matrices M such that $J_{2 n}^{\text {skew }} M+M^{T} J_{2 n}^{\text {skew }}=0$. We can express each element M of

$$
M=\left[\begin{array}{r|r}
A & B \\
\hline C & -A^{T}
\end{array}\right]
$$

B, C : symmetric matrices
Definition 3.3.22. The orthogonal Lie algebra $\mathfrak{s o l}(2 n) \subset \mathfrak{g l}(2 n)$ is the set of $2 n \times 2 n$ matrices M such that $J_{2 n}^{s y m} M+M^{T} J_{2 n}^{s y m}=0$. We can express each element of $\mathfrak{s o}(2 n)$ as a block matrix with $n \times n$ matrices A, B, C :

$$
M=\left[\begin{array}{r|r}
A & B \\
\hline C & -A^{T}
\end{array}\right]
$$

where B and C are skew-symmetric matrices.

$$
\begin{aligned}
& e=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \\
& h=\left[\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right] \\
& f=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

Also, $\operatorname{ll}(2)$
where we $\operatorname{tr}(m+n x)=0$

$M=\left[\begin{array}{r|r|r}0 & r & s \\ \hline-s^{t} & A & B \\ \hline-r^{T} & C & D\end{array}\right]$,
where B and C are skew-symmetric matrices

SUPER SPACE

- careful. In not a geoneto, not a phyriait super space means super vector spam

$$
V=V_{\text {even }} \oplus V_{\text {ode }}=V_{\overline{0}} \oplus V_{\bar{i}}
$$

\mathbb{Z}_{2} - graded vector spue
ex) $\mathbb{C}^{3}=\mathbb{C}^{1} \oplus \mathbb{C}^{2}$

$$
\left.=\mathbb{C}^{0} \oplus \mathbb{C}^{3}\right]{ }^{\text {in }} \text { ichor spate of }
$$

In the cateany of super vector spaces,

$$
\mathbb{C}^{212} \not \mathbb{C}^{013}
$$

Parity (V. $V=V_{\bar{i}} \oplus \nabla_{\bar{I}}$
parity map $p:{\overline{V_{0}}}^{V_{0}} \backslash \nabla_{\bar{z}} \rightarrow \mathbb{Z}_{2}$

$$
\begin{aligned}
& v \mapsto \overline{0}_{0} \text { if } v \in \mathcal{J}_{\overline{0}} \backslash\{0\} \\
& v \mapsto \overline{1} \text {, if } v \in \nabla_{\overline{1}} \backslash\{0\}
\end{aligned}
$$

of $V \quad P(x)=|x|$
Definition \& L hic superalzebral
Begin with a super vector space V Consider
 geventlinear lie superaly

Any linear map I on $-\forall$ decomposes as the unite sum of a parity-presening map with a pority-reversing map
super care (Cat of supe-vectorspuces) morphisms preserve parity

$$
\operatorname{ramatl} \underset{\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]}{\mathbb{C}^{3} \rightarrow \mathbb{C}^{3}} \rightarrow\left[\begin{array}{l}
0 \\
0 \\
a
\end{array}\right] \quad \begin{aligned}
& T(\text { even }) \leq \mathbb{C}^{I / 2} \rightarrow \mathbb{C}^{\text {IR }}
\end{aligned}
$$

