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SOME ARITHMETICAL DISCRETE

GROUPS IN LOBAĈEVSKIÎ SPACES

By È. B. VINBERG

Some terminology.
323

A reflection (in a vector space or in a simply connected Riemannian

space of constant curvature)—a reflection with respect to a hyperplane

(the mirror).

A reflection group—group generated by reflections.

An integral quadratic from—a from

f (x) = Σai jxix j where ai j = aji ∈ Z.

An integral automorphism, or a unit, of the form f —an integral lin-

ear transformation, which preserves this form.

Introduction. The subject of this report is an application of the

theory of discrete reflection groups to the study of the groups of units of

some indefinite integral quadratic forms.

The basic propositions of Coxeter’s theory of discrete reflection

groups in Euclidean spaces [1] may be transferred without difficulty to

discrete reflection groups in Lobaĉevskiî spaces. This enables us to find

a fundamental polyhedron, generators and defining relations of any such

group.

On the other hand, let f be an integral quadratic form of signature

(n, 1), i.e. equivalent over R to the form

fn(x) = −x2
0 + x2

1 + . . . + x2
n.

Then the group O( f ,Z) of units of the form f or, more precisely, its

subgroup of index 2, may be regarded as a discrete group of motions of

344
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n-dimensional Lobaĉevskiî space. It is known that it has a fundamental

domain of finite volume [2]. If the group O( f ,Z) contains a reflection

subgroup of finite index, we have the means for defining its fundamental

domain, generators and relations.

An integral quadratic form f (x) = Σai j xix j is called unimodular if 324

det(ai j) = ±1. For unimodular forms of signature (n, 1) the following

two cases are possible [6]:

(1) f is odd; then f is equivalent over Z to fn;

(2) f is even; then n = 8k + 1 and when n is fixed, all such forms are

equivalent over Z.

For the group O( f ,Z) or units of an unimodular integral quadratic

form f of signature (n, 1) we shall prove the two following theorems.

Theorem A. If n ! 17, the group O( f ,Z) contains a reflection subgroup

of finite index.

The fundamental polyhedron of the maximal reflection subgroup of

O( f ,Z) will be described explicitly in all these cases.

Theorem B. If n " 25, the group O( f ,Z) contains no reflection sub-

group of finite index.

For 18 ! n ! 24 the question is open.1

A more detailed exposition of these and some other results will ap-

pear in [13, 14].

1 Discrete reflection groups.

1. Let Xn be an n-dimensional simply connected Riemannian space of

constant curvature, i.e. a sphere S n, Euclidean space En or Lobaĉevskiî

space Λn.

1J. M. Kaplinskaya has proved that the groups O( f18,Z) and O( f19,Z) contain a

reflection subgroup of finite index. On the other hand, it follows from a consideration

communicated to me by M. Kneser, and Theorem 3.5 below that the group O( f20.Z)

contains no such subgroup. Thus the group O( f ,Z) (where f is such as in the text)

contains a reflection subgroup of finite index if and only if n ! 19.
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Let Γ be any discrete reflection group (d.r.g.) in the space Xn. The

mirrors of all reflections belonging to Γ decompose Xn into Γ-equivalent

convex polyhedra, called Γ-cells. Each of these cells is a fundamental

domain for Γ.

For some Γ-cell P, let us denote325

Pi(i ∈ I)—all (n − 1)-dimensional faces of P,

Hi(i ∈ I)—the corresponding hyperplanes,

Ri(i ∈ I)—the corresponding reflections.

It is known that

(1) for any pair {Pi, P j} of adjacent faces the angle between Pi and P j

is of the form
π

ni j
, where ni j ∈ Z;

(2) the Ri generate Γ;

(3) the relations

R2
i = 1, (RiR j)

ni j = 1

are defining relations for the Ri.

It is also known [9, 10] that if Pi and P j are not adjacent, then Hi

and H j are either parallel, or diverging (in the case Xn = Λn).

Conversely, any convex polyhedron, all the dihedral angles of which

are submultiples of π, is a cell of some d.r.g.

The Coxeter’s diagram Σ(Γ) of a d.r.g. Γ. In the above notation,

Σ(Γ) is a graph with vertices vi(i ∈ I) which are joined as follows:

the vertices vi and v jif

are joined

Pi and P j are adjacent and the by an (ni j − 2)-tuple line or by a

angle between them is equal simple line with index ni j

to π/ni j

Hi and H j are parallel by a thick line or by a simple

line with index ∞

Hi and H j are diverging by a dotted line
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If Pi and P j are orthogonal (ni j = 2), v j and v j are not joined.

The cosines matrix cos Γ of a d.r.g. Γ is defined as follows: 326

cos Γ =

(

− cos
π

ni j

)

where we put ni j = 1 and cos
π

ni j
= 1 if ni j is not defined. Evidently the

cosines matrix may be reconstructed after the Coxeter’s diagram.

2. We shall consider now three remarkable classes of d.r.g.

Finite reflection groups. Such are all the d.r.g. in S n and those

d.r.g. in En and Λn, which have a fixed point. The number of generators

of a finite reflection group is called its rank.

It is known [1] that a d.r.g. is finite if and only if its cosines matrix

is positive definite, so the finiteness property of a d.r.g. depends only on

its diagram.

A diagram of a finite reflection group is called an elliptic diagram.

Its rank is by definition the rank of the corresponding group. It is equal

to the number of vertices.

A Coxeter’s diagram is elliptic if and only if all its connected com-

ponents are such. All the connected elliptic diagram are given in Table 1.

Parabolic Reflection Groups. A diagram of a d.r.g. in En with a

bounded cell is called a parabolic diagram or rank n. A d.r.g. is said

to be parabolic reflection group of rank n if its diagram is parabolic or

rank n. For example, such is a d.r.g. in Λn with a fixed improper point

if it has a bounded cell on an orysphere with center at this point.

A Coxeter’s diagram is parabolic if and only if all its connected com-

ponents are such. Its rank is equal to the number of vertices minus the

number of connected components. All connected parabolic diagrams

are given in Table 2.

It is known [1] that the connected Coxeter’s diagram is parabolic if

and only if the corresponding cosines matrix is degenerate non-negative

definite.

Lanner’s Groups. In the work [3] by Lanner were firstly enumerated 327

all d.r.g. in Λn with simplicial bounded cells. We shall the diagrams of



348 1 DISCRETE REFLECTION GROUPS.

these groups the Lanner’s diagrams. They are given in Table 3. Any

d.r.g., whose Coxeter’s diagram is a Lanner’s diagram, will be called a

Lanner’s group.

3. Let Γ be a d.r.g. in Xn. It is known that the stable subgroup

Γx ⊂ Γ of any point x ∈ Xn is generated by reflections. More precisely,

let P be a Γ-cell containing x; Pi, Hi and Ri(i ∈ I) are the same as in

(1.1). Let us denote by H−i the halfspace bounded by Hi and containing

P. So P =
⋂

i∈I
H−i . If J = {i ∈ I : Hi ∋ x}, then Γx is generated by

the reflections Ri, i ∈ J, and Px =
⋂

i∈I
H−i . If J = {i ∈ I : Hi ∋ x},

then Γx is generated by the reflections Ri, i ∈ J, and Px =
⋂

i∈J
H−i . If

J = {i ∈ I : Hi ∋ x}, then Γx is generated by the reflections Ri, i ∈ J, and

Px =
⋂

i∈J
H−i is a Γx-cell.

In the case Xn = Λn the above assertions hold true for some im-

proper points namely those for which Γx has a bounded fundamental

domain on an orysphere with center at x. Such improper points will be

said to possess the compactness property with respect to Γ.

4. Let Θ be an arbitrary discrete group in Xn. We denote by Γ the

group generated by all reflections belonging to Θ. Let P be a Γ-cell and

Sym P be the symmetry group of P.

It is trivial that Γ is a normal subgroup of Θ and that Θ is a semi-

direct product

Θ = Γ · H, (1.1)

where H is some subgroup in Sym P.

How to find P? Let us fix a point x0 ∈ Xn and suppose that for any

r > 0 we can enumerate all reflections in Θ, whose mirrors H satisfy

the condition ρ(x0,H) ! r, where ρ denotes the distance. Then we can

determine P as described below.

Some conventions. For any hyperplane H, we shall denote by H+

and H− the halfspaces bounded by H. We shall say that halfspaces H−1
and H−2 are opposite if one of the following cases take place:

(1) H1 and H2 are crossing and the dihedral angle H−1 ∩ H−2 does not328
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exceed
π

2
;

(2) H−1 ⊃ H2 and H−2 ⊃ H1;

(3) H−1 ∩ H−2 = .

An algorithm for constructing a Γ-cell.

“Firs we consider the stable subgroup Γ0 of x0 in Γ, i.e. the group

generated by all reflections in Θ, whose mirrors contain x0. Let

P0

k
⋂

i

Hi

be some Γ0-cell, each of the Hi being essential. There exists a unique

Γ-cell containing x0 and contained in P0. This Γ-cell we denote by P.

Now we shall construct one by one hyperplanes Hk+1,Hk+2, . . . and

halfspaces H−
k+1,H

−
k+2 . . . such that

P =
⋂

all i

H−i

each of the H−j being essential. The Hi will be ordered by increase of

ρ(x0,Hi).

Thus rules for constructing Hm and H−m for m " k+ 1 are the follow-

ing.

(10). H−m is that of two halfspaces bounded by Hm, which contains x0.

(20). If the H−i with i < m have been constructed, then Hm is chosen as

the nearest to x0 mirror of a reflection belonging to Θ for which

the halfspaces H−m and H−i are opposite for all i < m.

The procedure may be finite or infinite.”

In the rule 20 one may consider only those Hi for which ρ(x0,Hi) <

ρ(x0,Hm).

In the case Xn = Λn one may take for x0 an improper point possess-

ing the compactness property with respect to Γ. The Algorithm remains

in force if we replace ρ(x0,H)def
= min

x∈H
ρ(x0, x) by b(x0,H)def

= min
x∈H

b(x0, x), 329

where b(x0, x) is a positive function satisfying the following conditions:
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2 THE GRAM MATRIX OF A CONVEX POLYHEDRON IN

LOBAĈEVSKIÎ SPACE.

(a) for each motion ϕ of space Λn leaving x0 fixed, there exists such

a number c > 0 that

b(x0,ϕx) = cb(x0, x)

for all x ∈ Λn;

(b) xp → x0, xp ∈ Λ
n, implies b(x0, xp)→ 0.

(Explicit formulas for b(x0, x) and b(x0,H) see in 2.1).

Finding the Algorithm is not much longer than its formulation. Ob-

viously P ⊂ ∩H−i . It is sufficient to prove that each of the Hi bounds P.

Let m be the smallest index, for which Hm does not bound P, and let x

be the point of Hm nearest to x0. It is easy to prove.

Lemma 1.4. Let {H−i } be a set of halfspaces, each two of them being

opposite. If x0 ∈ ∩H−i and x is the point of Hm nearest to x0, then

x ∈ ∩H−i . Moreover, x ∈ Hi, i ! m, implies x0 ∈ Hi.

Thus x ∈ ∩H−i . From the rule 20 of choosing Hm we can deduce

that neither hyperplane bounding P separates x and x0. Furthermore if

a hyperplane bounding P contains x, then it is one of the hyperplanes

H1, . . . ,Hk. Hence P contains some neighbourhood of x in P0. This is

evidently impossible.

If the procedure by the Algorithm is finite, how to recognize its end?

This problem is of peculiar interest for the case Xn = Λn.

We shall discuss it in 2.4.

2 The Gram matrix of a convex polyhedron in

Lobaĉevskiî space.

1. A model of Lobaĉevskîi space. Let En,1 be an (n + 1)-dimensional

vector space with scalar multiplication of signature (n, 1). We have

{v ∈ En,1 : (v, v) < 0} = C ∪ (−C),

where C is an open convex cone. Let us denote by P the group of positive

real numbers. Then we identify n-dimensional Lobaĉevskiî space Λn
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withC/P in such a way that motions of Λn are induced by orthogonal

transformations of En,1 preserving C.

If we consider “projective sphere” PS En,1 = (En,1/{0})/P, then by 330

definition Λn ⊂ PS En,1. The closure Λ̄n of Λn in PS En,1 is the natural

compactification of Λn. Points of Λ̄n/Λn are called improper points of

Λn.

We shall denote by π the natural mapping

π : En,1 → PS En,1.

The distance ρ(x0, x) between two points x0 = π(v0) and x = π(v) of

space Λn is defined from the formula

ch ρ(x,0 , x) = −(v0, v), (2.1)

v0 and v being normed in such a way that (v0, v0) = (v, v) = −1. For an

improper point x0 = π(v0), (v0, v0) = 0, the function δ(x0, x) mentioned

in 1.4 may be also defined from the formula (2.1), with replacing ρ by ρ,

v being normed as above and v0 being chosen arbitrarily (so b depends

on the choice of v0).

Any hyperplane of space Λn is of the form

He = {π(x) : x ∈ C, (x, e) = 0}.

where e ∈ En,1, (e, e) > 0. For x0 = π(v0) ∈ Λn, (v0, v0) = −1, the

distance ρ(x0,H0) is defined from the formula

sh ρ(x0,He) = |(v0, e)| , (2.2)

e being normed in such a way that (e, e) = 1.

For an improper point x0 = π(v0), (v0, v0) = 0, this formula holds

good, if we replace ρ by b.

Let us suppose (e, e) = ( f , f ) = 1, f ! ±e. Then He and H f are

crossing (resp. parallel, diverging) if and only if |(e, f )| < 1(resp. =

1, > 1). If |(e, f )| < 1, then the angle α(He,H f ) between He and H f is

determined from the formula

cosα(He,H f ) = |(e, f )|.
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2 THE GRAM MATRIX OF A CONVEX POLYHEDRON IN

LOBAĈEVSKIÎ SPACE.

If |(e, f )| > 1, then the distance ρ(He,H f ) between H6 and H f is deter-

mined from the formula

ch ρ(He,H f ) = |(e, f )|.

For any e ∈ En,1 such that (e, e) > 0 we put

H−e = {π(x) : x ∈ C, (x, e) ! 0} . (2.3)

This is a halfspace bounded by H6. The halfspaces H−
6

and H−
f

are331

opposite (see 1.4) if and only if (e, f ) ! 0.

The reflection with respect to He, in space Λn is induced by orthog-

onal reflection Re in En,1, which is written by the formula

Rev = v −
2(v, e)

(e, e)
e. (2.4)

2. Let P be a convex polyhedron in Λn. Suppose that

P =
⋂

i∈I

H−i , (2.5)

each of the H−i being essential. Take vectors ei ∈ En,1(i ∈ I) such that

H−i = H−ei
, (ei, ei) = 1.

Then the Gram matrix of the set {ei : i ∈ I} will be called the Gram

matrix of the polyhedron P and will be denoted by G(P).

It is known ([9], [12]) that if all the dihedral angles of P do not

exceed π/2, then H−i and H−j are opposite for all i, j(i ! j), so all the

non-diagonal elements of G(P) are non-positive.

The polyhedron P will be called non-degenerate, if

(1) the Hi have no common point, proper or improper;

(2) there exists no hyperplane, orthogonal to each Hi.
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It is easy to see, that these conditions are equivalent to the strict

convexity of the cone

K = {v ∈ En,1 : (v, ei) ! 0 for all i ∈ I}.

If P is non-degenerate, then G(P) is a symmetric matrix of signature

(n, 1).

Conversely, one can prove

Theorem 2.2 ([10], [12]). Let G = (gi j) be a symmetric matrix of sig-

nature (n, 1) with

gi j = 1, gi j ! 0(i ! j).

Then G is the Gram matrix of a convex polyhedron in Λn determined

uniquely up to a congruence.

The connection between the Gram matrix and the Coxeter’s dia- 332

gram. Let P be a cell of a d.r.g. Γ in Λn, and G(P) = (gi j) bet its Gram

matrix. It is clear from the definition of the Coxeter’s diagram Σ(Γ) that

if the verticles vi and v j then

of Σ(Γ) are joined

by a m-tuple line gi j = − cos π
m+2

by a thick line gi j = −1

by a dotted line gi j < −1

(In particular, if vi and v j are not joined, then gi j = 0.)

Thus the Gram matrix can be reconstructed after the Coxeter’s dia-

gram modulo elements corresponding to dotted lines.

If the Coxeter’s diagram contains no dotted lines, then the Gram

matrix coincides with the cosines matrix and is completely determined

by the Coxeter’s diagram.

Note that, if P is bounded, G(P) is always completely determined

by Σ(Γ) [7].

3. From now on, we shall deal only with finite polyhedra, i.e. poly-

hedra with a finite number of faces.
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2 THE GRAM MATRIX OF A CONVEX POLYHEDRON IN

LOBAĈEVSKIÎ SPACE.

Let P be a convex polyhedron in Λn. We shall assume that P is

defined by the formula (2.5) with a finite set I.

An improper point q of space Λn will be called an improper vertex

of P, if q ∈ P̄ and the intersection of P with by orysphere with center in

q is compact.

For an improper point q and a subset M of Λn we agree to write

q ⊂ M if q ∈ M̄.

Let F be a proper face or improper vertex of P. We define the subset

b(F) of I as follows:

b(F) = {i ∈ I : F ⊂ Hi}.

Obviously F is determined by b(F). More generally,333

F1 ⊂ F2 ⇔ b(F1) ⊃ b(F2).

The family of the subsets b(F) describe the combinational structure of

P.

We denote by G = (gi j) the Gram matrix of P and by GS for any

subset S of I, its principal submatrix formed by elements gi j with i, j ∈

S .

It is remarkable that, if all the dihedral angles of P do not exceed

π/2, the property of a subset S of I being one of the b(F) depends only

on the matrix GS . For the formulation of this result we need

Some Definitions. A square matrix A is said to be a direct sum of

matrices A1, . . . , Ak (write : A = A1 ⊕ . . . ⊕ Ak), if A may be reduced to

the form

(

A1 0

0 Ak

)

by a suitable transposition of the rows and the same

transposition of the columns. A matrix A is called indecomposable if it

is not a direct sum of two matrices.

Any matrix may be uniquely represented as a direct sum of inde-

composable matrices, called its indecomposable components.

Let A be a symmetric matrix, all non-diagonal elements of which

are non-positive. We shall say the matrix A is parabolic if all its inde-

composable components are degenerate non-negative definite.

Now we can formulate
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Theorem 2.3 ([12]). Let all the dihedral angles of P not exceed π/2.

Then for a subset S of I being the b(F), where F is a k-dimensional

proper face (resp. an improper vertex) of P, it is necessary and sufficient

that GS be a positive definite matrix of rank n − k (resp. a parabolic

matrix of rank n − 1).

Note that the rank of a parabolic matrix is equal to its order minus

the number of its indecomposable components [1].

In the case when P is a cell of a d.r.g. Γ, the matrix GS is positive 334

definite (resp. parabolic) if and only if the corresponding subdiagram

of the Coxeter’s diagram Σ(Γ) is elliptic (resp. parabolic) in the sense

of 1.2. The rank of GS coincides with the rank of the corresponding

subdiagram. If S = b(F), the subgroup ΓS of Γ, generated by reflections

Ri with i ∈ S , is the stable subgroup of any interior point of F.

4. A convex polyhedron in Λn is of finite volume if and only if it is

the convex hull of a finite number of points, proper or improper.

Lemma 2.4. Let P be a convex polyhedron of finite volume in Λn. Fur-

ther let P′ be a convex polyhedron with the following properties:

(1) P′ ⊂ P;

(2) each hyperplane bounding P bounds P′;

(3) all the dihedral angles of P′ do not exceed π/2.

Then P′ = P.

It is sufficient to prove that any vertex of P is a vertex of P′. This

follows from Theorem 2.3, because G(P) is by the condition a principal

submatrix of G(P′),

Now we can complement the Algorithm described in 1.4. by

A sufficient condition for the termination of the procedure by the

Algorithm: “If for some m the polyhedron

P(m)
=

m
⋂

i=1

H−i
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2 THE GRAM MATRIX OF A CONVEX POLYHEDRON IN

LOBAĈEVSKIÎ SPACE.

is of finite volume, then P(m) = P.”

Indeed, suppose that there is some Hm+1. Then we may apply the

Lemma above to P(m) and P(m+1) which leads to a contradiction.

5. We need to consider some special types of matrices.

A symmetric matrix with non-positive elements beyond the diago-

nal will be called critical if it is not positive definite but its every proper

principal submatrix is such. It is clear that any critical matrix in inde-

composable.

There are two types of critical matrices.335

First type: Non-negative definite critical matrices. These are the

same as indecomposable parabolic matrices. The diagonal elements be-

ing equal to 1, a symmetric matrix is a critical matrix of the first type of

and only if it is the Gram matrix of a simplex in En.

Second type: Non-definite critical matrices. The diagonal elements

being equal to 1 and the order being " 3, a symmetric matrix is a critical

matrix of the second type if and only if it is Gram matrix of a simplex

in Λn. This follows from Theorems 2.2 and 2.3.

Let Γ be some d.r.g., and G be the Gram matrix of a Γ-cell. The

matrix G is critical in the following three cases:

(1) Σ(Γ) is a connected parabolic diagram, i.e. is found in Table 2;

(2) Σ(Γ) is a Lanner’s diagram, i.e. is fond in Table 3;

(3) Σ(Γ) is the diagram ◦ − − − ◦.

In the first case P is non-negative definite, in two other cases-non-

definite.

6. Let P be a non-degenerate convex polyhedron in Λn, defined by

means of its Gram matrix G. Under some additional assumptions, we

shall give below a simple criterion for P to have finite volume.

In the notations of 2.2, we put

Pc
= π(K) ⊂ PS En,1.
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This is a convex polyhedron in projective sphere PS En,1. Any k-dimen-

sional face of P is a part of a unique k-dimensional face of Pc. From the

assumption of non-degeneracy of P it follows that Pc is the convex hull

of its vertices. We shall call Pc the completion of P.

Obviously,

P is bounded⇔ Pc ⊂ Λn,

P has finite volume⇔ Pc ⊂ Λ̄n.

Theorem 2.6. Let G contain no non-definite critical principal subma-

trices. Then P is of finite volume if and only if every indecomposable

parabolic principal submatrix of G is an indecomposable component of

some parabolic principal submatrix of rank n − 1.

Proof of the “if” part. It is sufficient to show that any vertex of Pc 336

lies in Λ̄n. Let q = π(e0), e0 ∈ En,1, be a vertex of Pc, which is not a

proper vertex of P, i.e. does not belong to Λn. Put

S = {i ∈ I : (e0, ei) = 0}.

Then the matrix GS is not positive definite and contains a critical prin-

cipal submatrix, say GT (T ⊂ S ). By our assumptions GT is parabolic

and is a component of a parabolic principal submatrix of rank n− 1, say

GS̃ (S̃ ⊃ T ). By Theorem 2.3, S̃ = b(q̃) where q̃ is an improper vertex

of P.

Let us consider the face

F = {π(v) : v ∈ K, (v, ei) = 0∀i ∈ T }

of Pc. Evidently F ∋ q, q̃. If F ! q̃, then F ∩ Λn is a proper face of P,

and GT is positive definite, which is not true. Hence

F = q̃ = q ∈ Λ̄n.

Proof of the “only if” part. Let P be of finite volume, and let S

be a subset of I such that GS is an indecomposable parabolic matrix. If
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3 THE GROUPS OF UNITS OF UNIMODULAR INTEGRAL

QUADRATIC FORMS OF SIGNATURE (N, 1).

is known [1] that the rows of G obey a linear dependence with positive

coefficients ai, i ∈ S . Put

e0 =

∑

i∈S

aiei.

Then (e0, e0) = 0 and e0 ∈ K. Further e0 ! 0, or else (v, ei) = 0 for

all v ∈ K, i ∈ S , which is impossible. Hence q = π(e0) is an improper

vertex of P.

By Theorem 2.3, Gb(q) is a parabolic matrix of rank n − 1. On the

other hand, it is clear from the definition of e0 that S ⊂ b(q). Hence GS

is a component of Gb(q).

The specialization to the case, where P is a Γ-cell. Let Γ be a

d.r.g. in Λn and P be its cell. Suppose that P is non-degenerate. Then

the theorem above may be formulated in terms of the Coxeter’s diagram

Σ(Γ) as follows.

Theorem 2.6 Bis. Let Σ(Γ) contain no dotted lines and Lanner’s sub-

diagrams. Then P is of finite volume if and only if every connected

parabolic subdiagram of Σ(Γ) is a connected component of some para-337

bolic subdiagram of rank n − 1.

3 The groups of units of unimodular integral

quadratic forms of signature (n, 1).

1. Let f (x) = Σai jxix j be a non-degenerate integral quadratic form of

signature (p, q). Then in the pseudo-euclidean space Ep,q there exists

such a basis {ui} that (ui, uj) = ai j. The group L generated by the ui is a

lattice in Ep,q. We shall call L the lattice corresponding to the form f .

The group O( f ,Z) of integral automorphisms of the form f is nat-

urally identified with the group O(L) of orthogonal transformations of

Ep,q preserving L.

Let e be a primitive non-isotropic vector of L. The reflection Re

defined by the formula (2.4) preserves L if and only if f (e)
∣

∣

∣2(v, e) for all
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v ∈ L. If f is unimodular, this is equivalent to the condition | f (e)| = 1 or

2.

2. From now on,

f (x) =

n
∑

i, j=0

ai jxix j

is a unimodular integral quadratic form of signature (n, 1) and L is the

corresponding lattice in the space En,1. By definition, L has a basis

{u0, u1, . . . , un} for which

(ui, uj) = ai j.

We have

O(L) = {1,−1} × Θ,

where Θ is the subgroup consisting of transformations preserving C (see

2.1). The group Θ may be considered as a discrete group of motions of

Lobaĉevskiî space Λn. It is known [2] that its fundamental domain is of

finite volume and may be chosen as a finite polyhedron.

Reflection (in the sense of Lobaĉevskiî geometry) belonging to Θ

are exactly the reflections R6, where e runs over all the primitive vectors

of L satisfying the condition

f (e) = 1 or 2. (3.1)

We have a decomposition (1.1) for Θ. To determine a Γ-cell P one 338

may use the Algorithm described in 1.4. Let e1, e2, . . . be such primitive

vectors of L that

H−i = H−ei

(see (2.3)). Then the ei are solutions of (3.1) such that (v0, ei) ! 0.

Thus by the Algorithm we have to look for solutions of the Diophan-

tine equation (3.1) such that

(v0, e) ! 0.

These solutions must be ordered by increase of the value

v(e) =
(v0, e)2

f (e)
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(see 2.2). A solution e is included in the sequence {e1, e2, . . .} if and only

if it satisfies the condition

(e, ei) ! 0

for all terms ei of this sequence which have been already constructed.

The vector v0 may be chosen arbitrarily in C/{0}. The first vectors

e1, e2, . . . , ek of the sequence {e1, e2, . . .} are chosen in such a way that

the cone

K0 = {v ∈ En,1 : (v, ei) ! 0 for i = 1, . . . , k}

be a cell for the group Γ0 generated by all reflections R6 ∈ Θ with

(v0, e) = 0.

To recognize the end of the procedure we may use the sufficient

condition given in 2.4, combining it with Theorem 2.6 bis.

It is easy to show that the following three conditions are equivalent:

(1) [Θ : Γ] < ∞

(2) the sequence {e1, e2, . . .} is finite;

(3) for some m the volume of P(m) is finite.

3. First we shall consider the case, when f is odd. One may assume

that

f (x) = −x2
0 + x2

1 + . . . + x2
n

(see the introduction).

Take v0 = u0. Then Γ0 consists of all transpositions of u1, . . . , un339

combined with multiplications by ±1. One may put

K0 = {v =

n
∑

i=0

xiui : u1 " u2 " . . . " un " 0}.

Hence

ei = −ui + ui+1(i = 1, . . . , n − 1), en = −un.

The following terms of the sequence {e1, e2, . . .}must be of the form

e =
n
∑

i=0
xiui where

x0 > 0, x1 " x2 " . . . " xn " 0,
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x2
1 + . . . + x2

n = x2
0 + ϵ, ϵ = 1 or 2.

They must be ordered by increase of
x2

0

ϵ
.

For n ! 17 the procedure is finite. The vectors ei with i > n are
given in the following table

i ei ϵ for which n
x2

0

ϵ

n + 1
u0 + u1 + u2 1 n = 2 1

u0 + u1 + u2 + u3 2 n " 3 0,5

n + 2
3u0 + u1 + . . . + u10 1 n = 10 9

3u0 + u1 + . . . + u11 2 n " 11 4, 5

n + 3
4u0 + 2u1 + u2 + . . . + u14 1 n = 14 16

4u0 + 2u1 + u2 + . . . + u15 2 n " 15 8

n + 4

4u0 + u1 + . . . + u17 1 n = 17 16

6u0 + 2(u1 + . . . + u7)+
1 n = 16 36+u8 + . . . + u16

n + 5
6u0 + 2(u1 + . . . + u7)+

2 n = 17 18u8 + . . . + u17

The corresponding Coxeter’s diagram are given in Table 4A. They 340

all satisfy the conditions of Theorem 2.6 bis.

In each of these case, the group H in the decomposition (1.1) coin-

cides with the group Sym P ≃ Σ(Γ). This follows from the following

facts, which are seen immediately:

(1) any symmetry of Σ(Γ) induces a permutation of e1, . . . , em pre-

serving the lengths;

(2) e1, . . . , em generate L.

4. In the case, where f is even (and hence n = 8k + 1) we shall deal

otherwise.

For n = 9 and 17 we consider two diagrams of Table 4B. Denote

them by Σ′ and Σ′′. The corresponding cosines matrix we denote by G′

and G′′ respectively.

We see immediately that
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(1) Σ′ and Σ′′ are not elliptic or parabolic diagrams;

(2) they contain elliptic subdiagrams of rank 8 and 16 respectively;

(3) det G′′ = 0.

Hence G′ and G′′ are of signature (8, 1) and (16, 1) respectively. By

Theorem 2.2 they are the Gram matrices of convex polyhedra P′ ⊂ Λ9

and P′′ ⊂ Λ17 respectively.

The diagrams Σ′ and Σ′′ satisfy the conditions of Theorem 2.6 bis.

Hence P′ and P′′ are of finite volume. By means of Theorem 2.3 it is

easy to show that

(1) P′ is a simplex with a single improper vertex q which is opposite

to the face P′10;

(2) P′′ is a pyramid over the direct product of two 8-dimensional sim-

plexes, with an improper apex q; its base is P′′19.

In each of the two considered cases, we define vectors e1, . . . , em ∈

En,1 as in 2.2, but normed in such a way that (ei, ei) = 2. Then (ei, e j) ∈

Z for all i, j, Hence the group L generated by e1, . . . , em is an integral

lattice in En,1.

The Gram matrix of the set {e1, . . . , em} is 2G′ or 2G′′ respectively.341

A computation shows that

det 2G′ = det 2G′′19 = −1,

where G′′19 is G′′ without the last row and the last column. Therefore

the lattice L is the lattice corresponding to an even unimodular integral

quadratic form f of signature (n, 1).

The group O(L) is naturally isomorphic to the group of units of the

form f .

Obviously, Rei
∈ O(L) for i = 1, . . . ,m. The group Γ generated by

Re1 , . . . ,Rem
having a fundamental domain of finite volume in Λn, is a

subgroup of finite index in O(L).

Really Γ is the maximal reflection subgroup in O(L). To prove this

we may apply the Algorithm taking for x0 the improper point q defined

above.
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As well as in 3.3, one can show that H = S ymΣ(Γ), i.e. H is trivial

for n = 9 and H ≃ Z/2Z for n = 17.

Thus we have proved Theorem A formulated in the introduction.

5. In the rest of this paragraph we shall prove Theorem B formu-

lated in this introduction.

Let f be an odd unimodular integral quadratic form of signature

(n, 1) and L be the corresponding lattice in En,1.

Further let f0 be an arbitrary unimodular positive definite integral

quadratic form on n − 1 variables and L0 be the corresponding lattice in

En−1.

We agree to denote by the symbol ⊥ an orthogonal direct sum of

metric vector spaces or lattices.

Lemma 3.5. There exists an isometric imbedding τ : En−1 → En,1 such

that

L = τ(L0) ⊥ M,

where M is some 2-dimensional lattice.

To prove this, we consider the lattice M′ in E1,1 corresponding to 342

the quadratic form

2y0y1 + y2
1. (3.2)

Obviously the lattice L0 ⊥ M′ in En−1 ⊥ E1,1 corresponds to an odd

unimodular integral quadratic form of signature (n, 1). In view of the in-

tegral equivalence of all such forms, there exists an isometry τ : En−1 ⊥

E1,1 → En,1 such that τ(L0 ⊥ M′) = L. We put τ(M′) = M. Then

Γ = τ(L0) ⊥ M. q.e.d.

Now let us assume that O(L) contains a reflection subgroups Γ of

finite index. Then every improper point of Λn possessing the compact-

ness property with respect to O(L) (see the definition in 1.3) possesses

this property with respect to Γ

On the other hand, it is well known (and it is easy to show) that an

improper point x of Λn possesses the compactness property with respect

to O(L) if and only if it is of the form x = π(v) where v ∈ L.

In the notations of the lemma above, take for v any isotropic vector

of M. It follows from the compactness property of the point x = π(v)
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that there exists such reflections Re1 , . . . ,Rek
∈ O(L) leaving v fixed, that

the rank of the Gram matrix of the set {e1, . . . , ek} is equal to n − 1. We

may suppose that the ei are primitive vectors of L. Then f (ei) = 1 or 2.

Since (v, ei) = 0, it follows that ei = τ(e
′
i ) + civ, where e′i ∈ L0,

ci ∈ Q and (e′i , e
′
j) = (e j, e j) for all i, j. In particular f0(e′i) = 1 or 2.

Furthermore the Gram matrix of {e′i , . . . , e
′
k
} being of rank n − 1, the e′i

generate a sublattice of finite index in L0.

A definition. Let f0 be a unimodular positive definite integral quadratic

form and L0 be the corresponding lattice. We shall call f0 a reflection

form if the vectors e ∈ L0, for which f0(e) = 1 or 2, generate a sublattice

of finite index in L0.

In these terms, we have proved

Theorem 3.5. If the group of units of an odd unimodular integral

quadratic form of signature (n, 1) contains a reflections subgroup of fi-

nite index, then every unimodular positive definite integral quadratic343

form on n − 1 variables is a reflection form.

Corollary . Every unimodular positive definite integral quadratic form

on ! 16 variables is a reflection form.

(Of course, this may be deduced from the classification of such

forms due to M. Kneser [4].)

6. Theorem 3.5 has an analogue in the theory of even forms.

Theorem 3.6. If the group of units of an even unimodular integral

quadratic form of signature (n, 1) contains a reflection subgroup of finite

index, then every even unimodular positive definite integral quadratic

form on n − 1 variables is a reflection form.

The proof is the same as the one of Theorem 3.5, replacing the form

3.2 by 2y0y1.

7. It is known [5] that there exists as even unimodular positive def-

inite integral quadratic form on 24 variables, which does not represent

2. Therefore for n " 25 the group of units of any unimodular integral
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quadratic form of signature (n, 1) contains no reflection subgroups of

finite index. q.e.d.

Table 1: Connected elliptic diagrams. (Lower index is equal to the

rank)

An, n " 1

Bn or Cn, n " 2 =

Dn, n " 4

En, n = 6, 7, 8

F4 =

G
(m)
2

, m " 5

H3

H4

344

Table 2: Connected parabolic diagrams. (Lower index is equal to

the rank)

Ã1

Ãn, n " 2

B̃n, n " 3 =
C̃n, n " 2 ==
D̃n, n " 4

Ẽ6
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Ẽ7

Ẽ8

F̃4 =
G̃2

345

Table 3: Lanner’s diagrams. (n denotes the rank)

,

=

=

=

= =

= =

346

347
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6

7

Table 4: The diagrams of the maximal reflection subgroups of the

groups of units of unimodular integral quadratic forms of signature

(n, 1), n ! 17. (The enumeration of vertices corresponds to the one

in the text.)

A. Odd Forms.

=1 2 3 = = =1 2 3 1 2 34 4

5

1 2 3 4 5 6 7 8 9 10 12

14

11
=
13

15

1 2 3 4 5 6 7 8 9 10

12

11
=

13
==

1 2 3
=

=
1 2 3 4 5 6 7 8 9 10 12

11

=
1 2 3 4 5 6 7 8 9 10 12

13

11

14
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=
=

=

1
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4

5
6 7
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2
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9
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1415
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2 1

17

14 13 12

11163

15

4 5 6 7 8 9 10

18

B. Even Forms. n = 9, 17.
21 3 4 5 6 7 8

9

10

21 3 4 5 6 7 8

9

11

18

1012131415161719
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