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Preface

These notes developed while trying to gather some of the background mate-
rial while working on certain complex hyperbolic reflection groups. The notes
are roughly in two parts. The first part consists of section 1 through 10 and is
a quick introduction to some aspects of real and complex hyperbolic geometry.
The second part consists of section 11 through 22 and is about hyperbolic re-
flection groups. One aim to give a quick straight path to the beautiful results
of Conway and Borcherds on the reflection group of the even self dual lattice of
signature (25, 1) acting on real hyperbolic space of dimension 25 and the result
of Allcock on the largest known arithmetic complex hyperbolic reflection group
acting on complex hyperbolic space of dimension 13. We wanted to collect all
the background material necessary to get to these results and in particular give
a detailed exposition to Vinberg’s algorithm. We have tried to keep the prereq-
uisites minimal and tried to keep the arguments as self contained as possible.
The main exception is that most of the results in section on hyperplanes. facets,
chambers of hyperbolic reflection groups are almost verbatim copies of similar
results about Euclidean reflection groups from Bourbaki, Lie algebra and Lie
groups Chapter 5, section 1. In these cases, we have just referred to Bourbaki
for the proofs.

In the first part of the notes we give a mostly uniform introduction to real and
hyperbolic spaces, working in the projective model. In particular, the results in
section 3 to 8 hold in both real or complex cases. Of course this development of
hyperbolic geometry is highly lopsided and completely omits much of the most
important topics. We mostly get by only using linear algebra. There is nothing
here about negative curvature, or CAT(0) geometry, Fuschian groups and so
on. However, we only take about 30 pages to introduce hyperbolic geometry
other than bringing out the parallel between real and complex cases, we have
found that this approach also quickly introduces the necessary tools for someone
interested in computing with real and complex hyperbolic reflection groups.

None of the results here are new. Some of the proofs are our own but
we believe they are all well known. The organization and ordering of topics
is our own as are all the errors that have inadvertently creeped in. We have
freely borrowed from Bridson-Haefliger, Bourbaki, Humphreys and the papers
of Borcherds and Allcock and other sources whenever convenient.
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1 Geodesic spaces

1.1 Definition. In this section, (X, d) will always denotes a metric space. If A
and B are non-empty subsets of X , let d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}. If
x ∈ X , let d(A, x) = d(A, {x}). For A ⊆ X , define

Br(A) = {y ∈ X : d(A, y) < r}.

So Br(x) = Br({x}) is the open ball of radius r centered at x. Let cl(Br(x))
denote the closure of Br(x). A subset of X is bounded if it is contained in a ball.
A metric space is called proper if every closed ball in X is compact and hence,
every closed and bounded subset of X compact.

1.2 Lemma. Let ∅ 6= A ⊆ X.
(a) If x, y ∈ X, then |d(A, x) − d(A, y)| ≤ d(x, y).
(b) The function d(A, ·) : X → R given by (x 7→ d(A, x)) is continuous.

Proof. Fix ǫ > 0. There exists a ∈ A such that d(a, x) < d(A, x) + ǫ. Then

d(A, y) ≤ d(a, y) ≤ d(a, x) + d(x, y) ≤ d(A, x) + d(x, y) + ǫ.

Since ǫ is arbitrary, we have (d(A, y)−d(A, x)) ≤ d(x, y). Part (a) follows. Part
(b) follows from part (a).

1.3 Definition. If f : [a, b] → X is a continuous function, we say that f is a
parametrized curve in X from f(a) to f(b). We say that f(a) is the origin of f
and f(b) is the endpoint of f . Let f : [a, b] → X and g : [c, d] → X such that
f(b) = g(c). Define f ∗ g : [a, b+ d− c] → X by

(f ∗ g)(s) =
{

f(s) for s ≤ b

g(c− b+ s) for s ≥ b.

We say that f ∗ g is the concatenation of f and g.
Let P = (a1 < · · · < an) be a partition of [a, b]. Let ‖P‖ = maxi{|ai−ai−1|}.

Define the Riemann sum

l(f, P ) =
∑

i

d(f(ai), f(ai−1)).

A parametrized curve f is rectifiable if sup{l(f, P ) : P is a partition of [a, b]}
is finite and in that case the supremum is called the length of f , denoted l(f).
Let f and g be curves in X such that the endpoint of f is the origin of g. Then
f ∗ g is rectifiable if and only if f and g are rectifiable and one has

l(f ∗ g) = l(f) + l(g).

In particular, let f : [a, b] → X and c ∈ [a, b], Then f is rectifiable if and only if
f |[a,c] and f |[c,b] are rectifiable and l(f) = l(f |[a,c]) + l(f |[c,b]).
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1.4 Theorem. Piecewise Lipschitz continuous paths in X are rectifiable. If
f : [a, b] → X is a rectifiable path, then l(f) = limn→∞ l(f, Pn) where Pn is
any sequence of partitions such that Pn ⊆ Pn+1 for all n and ‖Pn‖ → 0. (Add
reference)

1.5. Arc length parametrization: Let f : [a, b] → X be a parametrized
curve. If φ is a non-decreasing function from [c, d] onto [a, b], then f ◦φ : [c, d] →
X is called a reparametrization of f . Reparametrization defines an equivalence
relation on the set of parametrized curves in X . An equivalence class will be
called an (oriented) curve in X . The length of a rectifiable curve is invariant
under reparametrization, so length of a curve is well defined.

Let f : [a, b] → X be a rectifiable parametrized curve of length l. Then
γ(t) = l(f |[a,t]) is a continuous weakly increasing function from [a, b] onto [0, l].
If γ(s) = γ(t) for some s < t, then l(f |[s,t]) = 0, so f |[s,t] is a constant. It
follows that there exists a unique parametrized curve f∗ : [0, l] → X such that
f∗(γ(t)) = f(t). Then one has l(f∗|[0,u]) = u for all u. We say that f∗ is
parametrized by arc length. So each rectifiable curve has a unique parametriza-
tion by arc length.

1.6 Definition (geodesic). Let x, y ∈ X . We say that f : [0, d0] → X is a
parametrized geodesic from x to y if f(0) = x, f(d0) = y and d(f(s), f(t)) =
|s − t| for all s, t ∈ [0, d0]. In particular d0 = d(x, y). Suppose f : [0, d0] → X
is a geodesic from x to y. If P is any partition of [r, s], then one verifies that
l(f |[r,s], P ) = (s− r). So f is rectifiable and

l(f |[r,s]) = (s− r)

= d(f(r), f(s)) for all 0 ≤ r ≤ s ≤ d0.

Observe that if f is a geodesic from x to y, then fop : [0, d0] → X defined by
fop(r) = f(d0 − r) is a geodesic from y to x. Say that (X, d) is a geodesic (resp.
uniquely geodesic), if there is a geodesic (resp. unique geodesic) joining any two
points of X . If there is a unique geodesic joining x and y in X , then this unique
geodesic will be denoted by [x, y].

1.7 Lemma. Let x, y ∈ X and d0 = d(x, y). Let {0, d0} ⊆ I ⊆ [0, d0]. Suppose
f : I → X be a function such that f(0) = x, f(d0) = y and

d(f(r), f(s)) ≤ (s− r) for all r < s and r, s ∈ I.

Then d(f(r), f(s)) = (s− r) for all r < s and r, s ∈ I.

Proof. Let r, s ∈ I, r < s. We have d(f(0), f(r)) ≤ r and d(f(r), f(d0)) ≤
(d0 − r). So

d0 = d(f(0), f(d0))

≤ d(f(0), f(r)) + d(f(r), f(d0))

≤ r + (d0 − r) = d0,
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so equality must hold everywhere, that is, d(f(0), f(r)) = r for all r ∈ I. Now

s = d(f(0), f(s))

≤ d(f(0), f(r)) + d(f(r), f(s))

≤ r + (s− r) = s,

so equality must hold everywhere, hence d(f(r), f(s)) = s− r.

1.8 Theorem. Suppose f is a rectifiable curve in X from x to y such that
l(f) = d(x, y). Then f (parametrized by arc length) is a geodesic joining x and
y. So X is a geodesic space if and only if any two point in X can be joined by
a rectifiable curve whose length attains the distance between the two points.

Proof. Let d0 = d(x, y). Parametrize f by arc length. So f : [0, d0] → X . We
have

d(f(r), f(s)) ≤ l(f |[r,s])
= (s− r) for all 0 < r < s < d0.

So 1.7 implies d(f(r), f(s)) = s−r for all 0 ≤ r ≤ s ≤ d0, that is, f is a geodesic.
Given two points x and y in a geodesic space X , take a rectifiable curve f

in X such that l(f) = d(x, y) and parametrize f by arc length. Then f is a
geodesic joining x and y.

The lemma below gives us a condition for point to lie on a geodesic.

1.9 Lemma. Suppose x, y, z ∈ X such that d(x, z)+d(z, y) = d(x, y). Let γ1 be
the geodesic joining x and z and γ2 be the geodesic joining z to y. Parametrize
γ1 ∗ γ2 by arc length and call it γ. Then γ is a geodesic joining x to y. In
particular, if X is geodesic space and x, y, z ∈ X, then z lies on a geodesic
joining x and y if and only if d(x, z) + d(z, y) = d(x, y).

Proof. Note that γ is parametrized by arc length, joins x to y and l(γ) =
l(γ1) + l(γ2) = d(x, z) + d(z, y) = d(x, y). So 1.8 implies that γ is a geodesic
joining x and y.
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2 Midpoints

In this section, (X, d) denotes a metric space.

2.1 Lemma. Let x, y ∈ X. Let f : [0, d0] → X be the unique geodesic from
x to y. If σ is an automorphism of (X, d) that interchanges x and y, then
σ(f(t)) = f(d0 − t). The automorphism σ fixes a single point of Image(f),
namely f(d0/2).

Proof. Note that σ−1fop and f are both geodesics from x to y, so fop = σf ,
that is

σ(f(t)) = f(d0 − t).

So σ fixes f(d0/2). On the other hand, if σ(f(t)) = f(t), then

t = d(f(0), f(t))

= d(σ(f(0), σ(f(t))

= d(f(d0), f(t))

= (d0 − t).

So t = d0/2.

2.2 Definition (midpoint). Let x, y ∈ X . We say that z ∈ X is a midpoint of
x and y if

d(x, z) = d(z, y) = d(x, y)/2.

When two points x and y have a unique midpoint, it will be denoted bym(x, y) =
md(x, y).

2.3 Lemma. Let (X, d) be a geodesic space. If x, y ∈ X and m is a midpoint
of x and y, then there is a geodesic from x and y that passes through m. In
particular, if there is a the unique geodesic f joining x and y, then f(d(x, y)/2)
is the unique midpoint of x and y.

Proof. Follows from lemma 1.9.

2.4 Theorem. (a) Suppose (X, d) is a complete metric space. Suppose every
pair of points in X has a unique midpoint. Then there is a unique geodesic
joining any two points in X.

(b) Suppose d and d′ are two metric on X such that given any x, y ∈ X,
there exists a unique midpoint md(x, y) = md′(x, y). Then d and d′ determine
the same geodesics.

Proof. Let I = {l.q : q ∈ [0, 1] is a diadic rational}. Let x, y ∈ X , l = d(x, y).
Suppose f : [0, l] → X is a geodesic joining x = f(0) and y = f(l). Then f( r+s

2 )
is the midpoint of f(r) and f(s) for all 0 < r < s < l. In particular f |I is
determined by the endpoints x and y by taking successive midpoints. Since f
is continuous, f is determined by f |I . This proves the uniqueness of geodesic
and part (b) and also suggests that we may construct the geodesic by taking
successive midpoints.
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Given x, y ∈ X with l = d(x, y), let f(0) = x, f(l) = y. We shall inductively
define f(t) for every t ∈ I. Having defined {f(0), · · · , f( kl

2n ), · · · , f(l)}, we let

f( (2k+1)l
2n+1 ) = m(f( kl

2n , f(
(k+1)l

2n )).

One verifies that d(f( kl
2n ), f(

(k+1)l
2n )) = l

2n for all n, k.

Let r, s ∈ I and r ≤ s. Write r = jl
2n and s = kl

2n with 0 ≤ j ≤ k ≤ 2n. Then

d(f(r), f(s)) = d(f( jl
2n ), f(

kl
2n ))

≤
k−1
∑

i=j

d(f( il
2n ), f(

(i+1)l
2n ))

= (k−j)l
2n

= (s− r).

Now 1.7 implies that d(f(r), f(s)) = (s − r) for all r, s ∈ I, r < s. Since X is
a complete metric space f : I → X extends uniquely to a continuous function
f : [0, l] → X such that d(f(r), f(s)) = (s − r) for all 0 ≤ r ≤ s ≤ l. So f is a
geodesic from x to y.

The lemma below generalizes 1.9 and gives a condition for a point to be close
to a geodesic.

2.5 Lemma ([BH], p 30). Let X be a proper uniquely geodesic space. Let
x, y ∈ X. Given any ǫ > 0, there exists η > 0 such that if u ∈ X such that
d(x, u) + d(u, y) < d(x, y) + η, then d(u, [x, y]) < ǫ.

Proof. Let Sǫ = {p ∈ X : d(p, [x, y]) = ǫ}. The function p 7→ d(p, [x, y]) is
continuous by 1.2, so Sǫ is closed. Also Sǫ is bounded (e.g. Sǫ ⊆ Bd(x,y)+2ǫ(x)).
Since X is proper, Sǫ is compact. Let η be the minimum value of the function

f(z) := d(x, z) + d(z, y)− d(x, y)

on Sǫ. Since X is uniquely geodesic, lemma 1.9 implies that η > 0.
Suppose u ∈ X such that d(u, [x, y]) ≥ ǫ. Since distance from [x, y] measured

along a geodesic is a continuous function, any geodesic joining x and u intersects
Sǫ. Let v be an intersection point. Then 1.9 implies that d(x, u) = d(x, v) +
d(v, u). So

d(x, u) + d(u, y) = d(x, v) + d(v, u) + d(u, y)

≥ d(x, v) + d(v, y)

≥ d(x, y) + η

where we have the last inequality since v ∈ Sǫ.

2.6 Lemma. Let X be a proper uniquely geodesic space. Let x, y ∈ X. Let
d0 = d(x, y)/2. Given any ǫ > 0, there exists δ > 0 such that if m′ ∈ X is such
that d(x,m′) and d(m′, y) belong to [d0 − δ, d0 + δ], then d(m′,m(x, y)) < ǫ.
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Sketch of proof. Let m = m(x, y). Suppose m′ ∈ X such that d(x,m′) and
d(m′, y) are both close to d0. We need to show that m′ is close to m. Since
d(x,m′) + d(m′, y) ≈ d(x, y), lemma 2.5 implies that there exists p ∈ [x, y] such
that d(m′, p) is small. Since d(x,m′) ≈ d0, we get d(x, p) ≈ d0. Since p and m
are both on [x, y], we have d(p,m) = |d(x, p) − d(x,m)|. It follows that p and
m are close, so m and m′ are close.

Lemma 2.6 gives us the following theorem:

2.7 Theorem. Let X be a proper uniquely geodesic metric space. Then the
midpoint function m : X ×X → X is continuous.

2.8 Definition. Let (X, d) be a metric space. We say that A ⊆ X is convex
if any two points in A can be joined by a geodesic and the image of any such
geodesic lies in A.

2.9 Lemma. Let X be a uniquely geodesic metric space. Then a closed subset
A of X is convex if and only if A is closed under taking midpoints, that is,
m(x, y) ∈ A for all x, y ∈ A.

Proof. Suppose A is a closed subset ofX and A is closed under taking midpoints.
Let x, y ∈ A. Let f : [0, d0] → A be the parametrized geodesic joining x and y.
Then

f((i + j)/2) = m(f(i), f(j)),

so f(i), f(j) ∈ A implies f((i+ j)/2) ∈ A. Since f(0) = x and f(d0) = y belong
to A, by induction it follows that f(kd0/2

n) ∈ A for all k, n ∈ N, k/2n ≤ 1.
Since f is continuous, the image of f is the closure of the set of points of the
form f(kd0/2

n).

2.10 Theorem. In a proper uniquely geodesic metric space, closure of a convex
set is convex.

Proof. Let X be proper, uniquely geodesic. Let A ⊆ X be convex. Let
x, y ∈ Acl. By 2.9, it suffices to show that m(x, y) ∈ cl(A). Fix ǫ > 0.
Using theorem 2.7, find a δ > 0 such that d(x, x′) < δ and d(y, y′) < δ im-
plies d(m(x, y),m(x′, y′)) < ǫ. Since x, y ∈ cl(A), we can choose x′, y′ ∈ A
such that d(x, x′) < δ and d(y, y′) < δ. Since A is convex, m(x′, y′) ∈ A and
d(m(x, y),m(x′, y′)) < ǫ. So m(x, y) ∈ cl(A).
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3 The hyperbolic space

3.1 Definition. Let F = R or C. If α ∈ F , let ᾱ denote the complex conjugate
of α. If F = R, then α 7→ ᾱ is the identity map. Let W be a vetor space over
F with a map 〈 , 〉 : W ×W → F such that

〈αw′ + βw′′, w〉 = α〈w′, w〉+ β〈w′′, w〉 and 〈w,w′〉 = 〈w′, w〉.

for all w,w′w′′ ∈ W and α, β ∈ F . If F = C, then 〈 , 〉 is a hermitian form. If
F = R, then 〈 , 〉 is really a symmetric bilinear form. In the next few sections,
we shall treat these two cases simultaneously and always refer to 〈 , 〉 as a
hermitian form.

Let (w1, · · · , wk) ∈ W . The matrix ((〈wi, wj〉)) is called the gram matrix of
(w1, · · · , wn) and is denoted by gram(w1, · · · , wk). If A ⊆ W , then we let

A⊥ = {w ∈ W : 〈w, a〉 = 0 for all a ∈ A}.

We write W⊥ = rad(W ) and call it the radical of (W, 〈 , 〉). Say that (W, 〈 , 〉)
is non degenerate if rad(W ) = 0. The hermitian form on W naturally induces a
non-degenerate hermitian form on W/ rad(W ).

Assume that W is a F -vector space with a non-degenerate hermitian form
〈 , 〉. We say that (W, 〈 , 〉) has signature (m,n) ifW has a basis (w1, · · · , wm+n)
whose gram matrix has m positive eigenvalues and n negative eigenvalues. We
write sgn(W ) = (m,n). One has

sgn(W1 ⊕W2) = sgn(W1) + sgn(W2).

Let w ∈ W . The real number |w|2 = 〈w,w〉 is called the norm of w. A non-zero
vector of norm zero is called a null vector. We let W< (resp. W≤) denote the
set of vectors of W having strictly negative (resp. non-positive) norm.

The vector space Fm+n+1 has the standard hermitian form of signature
(m,n+ 1) given by

〈(β0, · · · , βm+n), (α0, · · · , αm+n)〉 = −
n
∑

i=0

βiᾱi +

m+n
∑

i=n+1

βiᾱi.

We denote this hermitian space by Fm,n+1. Any hermitian space of signature
(m,n+ 1) is isometric to Fm,n+1.

For the next few sections, (V, 〈 , 〉) will always denote a hermitian
F -vector space of signature (n, 1). Let P(V ) be the projective space of V
and

P : V \ {0} → P(V )

be the projection. Let U be the group of linear automorphisms of the hermitian
vector space V . Each g ∈ U , induces an automorphism P(g) : P(V ) → P(V )
given by P(g)P(v) = P(gv). Let PU = {P(g) : g ∈ U}. Suppose g ∈ U such that
P(g) = idP(V ). Then for all v ∈ V , we have gv = λvv for some scalar λv. It
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follows that gv = λv for some constant λ ∈ F ∗. So PU ≃ U/F ∗. One verifies
that PU acts faithfully and transitively on P(V<). Define

c : P(V )× P(V ) → R by c(P(u),P(v)) =
√

〈u,v〉〈v,u〉
〈u,u〉〈v,v〉 .

3.2 Theorem. There is a PU invariant metric on P(V<) given by

d(P(u),P(v)) = cosh−1(c(P(u),P(v))).

Proof. Clearly d(P(u),P(v)) = cosh−1(c(P(u),P(v))) is PU invariant. It remains
to check the triangle inequality. Let v1, v2, v3 ∈ V<. Let α = 〈v1, v2〉, β =
〈v3, v1〉, γ = 〈v2, v3〉. Without loss, we may scale vj ’s to assume that |vj |2 = −1.
Since Span{vi, vj} is either singular or indefinite, we have |α|2 ≥ 1, |β|2 ≥ 1,
|γ|2 ≥ 1. Let M = gram(v1, v2, v3). If v1, v2, v3 are linearly independent then
Span{v1, v2, v3} has signature (2, 1) so det(M) < 0, otherwise det(M) = 0.

0 ≤ − det
(−1 α β̄

ᾱ −1 γ
β γ̄ −1

)

= 1− |α|2 − |β|2 − |γ|2 + 2Re(αβγ)

≤ 1− |α|2 − |β|2 − |γ|2 + 2|αβγ|
= (|α|2 − 1)(|β|2 − 1)− (|γ| − |α||β|)2.

Equivalently,
|α||β| +

√

|α|2 − 1
√

|β|2 − 1 ≥ |γ|.
The last inequality is equivalent to (cosh−1|α|+cosh−1|β|) ≥ cosh−1|γ|. Equal-
ity holds if and only if det(M) = 0, that is, v1, v2, v3 are linearly dependent.

3.3 Remark. Given u, v ∈ V<, sometimes we denote the distance between P(u)
and P(v) simply by d(u, v). Similarly, we sometimes write c(u, v) = c(P(u),P(v))
etcetera.

3.4 Definition. The metric space (P(V<), d) is called the hyperbolic space of
V . We let FHn be the hyperbolic space of Fn,1. The metric space FHn is
called the n dimensional hyperbolic space over F . Without loss, for the rest of
this section, we assume that V = Fn,1. Let B1(F

n) denote the unit ball in Fn

(with the usual positive definite Euclidean metric). The ball B1(F
n) has the

Euclidean metric topology. We have a bijection j : P(V<) → B1(F
n) given by

j(P(α0;α1, · · · , αn)) = (α1

α0
, · · · , αn

α0
).

with inverse given by j−1(β1, · · · , βn) = P(1;β1, · · · , βn). If g ∈ PU , then g acts
on B1(F

n) by g|B1(Fn) = jgj−1.

3.5 Lemma. (a) Let y = P(1; 0, 0, · · · , 0), so j(y) = 0 ∈ B1(F
n). Then

j(Br(y)) is equal to the Euclidean ball of radius tanh(r) around 0 in B1(F
n).

(b) If g ∈ PU , then g|B1(Fn) : B1(F
n) → B1(F

n) is a homeomorphism.
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Proof. (a) Let v = (v0; v1 · · · , vn) ∈ V<. One has d(P(v), y) < r if and only if

cosh2(r) >
|v0|2

|v0|2 − |v1|2 − · · · |vn|2

=
1

1− |j(P(v))|2 .

Equivalently, |j(P(v))| < (1− cosh−2(r))1/2 = tanh(r).
(b) Let g̃ ∈ U such that P(g̃) = g, i.e., P(g̃v) = gP(v) for all v ∈ V .

Let j̃ : V< → B1(F
n) be the map j̃(v0; v1, · · · , vn) = (v1v0 , · · · ,

vn
v0
). Let ĩ :

B1(F
n) → V< be the map ĩ(β1, · · · , βn) = (1, β1, · · · , βn). Then jgj−1 is equal

to the composition of the following maps each of which is continuous

B1(F
n)

ĩ−→ V<
g̃−→ V<

j̃−→ B1(F
n).

So jgj−1 is continuous and it has a continuous inverse given by jg−1j−1.

3.6 Remark. Let T and T ′ be two topologies on a set X . Let a ∈ X . Let
Na(T ) = {U ∈ T : a ∈ U} be the set of neighborhoods of a in the topology T .
If Nx(T ) = Nx(T ′) for each x ∈ X , then T = T ′. Suppose G is a transitive
group of homeomorpshisms of a topological space (X, T ) and let x0 ∈ X . Since
g ∈ G induces a bijection between Nx0

(T ) and Ngx0
(T ), the topology on X is

determined by the set of neighborhoods of x0.

3.7 Theorem. Identify P(V<) and B1(F
n) via j. Then,

(a) the hyperbolic metric d and the Euclidean metric E induce the same
topology on B1(F

n).
(b) A sequence in B1(F

n) is convergent (resp. bounded) in the metric d if
and only if it is convergent (resp. bounded) in the Euclidean metric E.

(c) (P(V<), d) is a complete and proper metric space.

Proof. (a) Part (a) of 3.5 shows that the 0 has the same set of neighborhoods
in both topology. The group PU is a transitive group of homeomorphisms of
B1(F

n) with hyperbolic topology, since the hyperbolic metric is PU invariant.
Now 3.5(b) shows that PU is also a transitive group of homeomorphisms of
B1(F

n) with the Euclidean topology. Part (a) follows by remark 3.6.
(b) Part (b) is immediate from part (a).
(c) Suppose {xn : n ∈ N} is Cauchy with respect to d. Then {xn} is bounded

with respect to d and hence E. By Bolzano-Weierstrass theorem, there exists
a subsequence {xnk

} that converges with respect to E in B1(F
n), hence it

converges with respect to d. Since {xn} is Cauchy with respect to d and has a
convergent subsequence, it converges in d.

3.8 Definition (points at infinity). We want to extend the topology on P(V<)
to a topology on P(V≤). If x ∈ V \ {0} such that x2 = 0, then the the sets of

the form {P(x)} ∪ P{y ∈ V< : |〈x, y〉|/
√

−|y|2 < r} are declared to be a local
basis at P(x). This defines a topology on P(V≤) containing P(V<) as an open
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dense subset and its boundary ∂P(V ) = P(V≤)\P(V<) as a totally disconnected
subset. The elements of ∂P(V<) are called the points at infinity or cusps of the
hyperbolic space P(V<) We shall discuss cusps more in the section on horoballs.

The homeomorphism j : P(V<) → B1(F
n) defined in 3.4 extends to a give

a bijection j1 from P(V≤) to the closed unit ball in Fn. However, j1 is not a
homeomorphism since the points at infinity have different set of neighborhoods.

3.9 Remark. The space CH1 (called the complex hyperbolic line) and RH2

(called the real hyperbolic plane) are isometric upto scaling. Recall that CH1 =
P(C1,1

< ), where C1,1 be a two dimensional complex hermitian space with the form
〈(x0, x1), (y0, y1)〉 = x1ȳ1 − x0ȳ0. Let B1(C) be the unit ball in C. We have a
bijection j : CH1 → B1(C) given by j(Px) = x1/x0. Pick P(x),P(y) ∈ CH1.
Let d = d(P(x),P(y)), u = x1/x0 and v = y1/y0. Now

1
2 (cosh(2d)− 1) = (cosh2 d− 1)

= |x1ȳ1−x0ȳ0|2
(|x0|2−|x1|2)(|y0|2−|y1|2) − 1

= |uv̄−1|2
(1−|u|2)(1−|v|2) − 1

= |u−v|2
(1−|u|2)(1−|v|2)

So 2d = cosh−1
(

1 + 2|u−v|2
(1−|u|2)(1−|v|2)

)

. This is the standard metric on the hyper-

bolic plane in the Poincare disc model (see Wikipedia).
One can see the isometry without computation. Note that PU(1, 1) acts

transitively on both CH1 (linearly) and the Poincare disc B1(C) (by linear frac-
tional transformations). One can show that the metric on CH1 and B1(C) are
the unique (upto scale) metic on these two spaces invariant under the PU(1, 1)
action (How?). Since j is PU(1, 1) equivariant, it must be an isomorphism of
metric spaces (upto scale).
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4 Geodesics and midpoints in hyperbolic space

Recall that V denote a hermitian F -vector space of signature (n, 1) (see 3.1).

4.1 Definition (reflections). Let s ∈ V such that s2 6= 0 and α ∈ F such that
|α| = 1. define Rα

s : V → V by

Rα
s (x) = x− (1− α)|s|−2〈x, s〉s.

Then Rα
s is an automorphism of V which fixes the hyperplane s⊥ pointwise.

The automorphism of P(V<) induced by Rα
s will also be denoted by the same

symbol. If s2 > 0 and α is a root of unity, then we say that Rα
s , is the α-

reflection in the vector s. The hyperplane s⊥ (or P(s⊥<)) is called the mirror

of this reflection. We write Rs = R
(−1)
s ; these are called real reflections. The

automorphism group of V is generated by these reflections (give reference or
include proof).

4.2 Theorem. (a) Let x, y, z ∈ V< such that c(x, y) = c(x, z). Then there
exists an automorphism of V that fixes x and takes P(y) to P(z).

(b) For each d0 > 0, the group of automorphisms PU acts transitively on the
set of ordered pairs of points in P(V<) that are at distance d0.

Proof. (a) Without loss, we may assume that |y|2 = |z|2 = −1. Next, by
changing y by a scalar of absolute value 1 if necessary, we may assume that
〈z, x〉 = 〈y, x〉. Let s = y − z and α = −(1 + 〈y, z〉)(1 + 〈z, y〉)−1. Note that
s ∈ x⊥, which is positive definite since |x|2 < 0. Now,

|s|2
〈y, s〉 =

|y − z|2
〈y, y − z〉

=
−2− 〈y, z〉 − 〈z, y〉

−1− 〈y, z〉
= 1− α.

So

Rα
s (y) = y − (1 − α)|s|−2〈y, s〉s

= y − s

= z.

Also Rα
s fixes x since 〈s, x〉 = 0.

(b) Let (x0, y0) and (x, y) such that d(x, y) = d(x0, y0). Since PU is transitive
on P(V<), there exists g ∈ U such that g(x) = x0. Since g(y) and y0 are
equidistant from x0, part (a) implies that there is an automorphism that fixes
x0 and takes g(y) to y0.

4.3 Lemma. Let y, z ∈ V<, P(y) 6= P(z). Let y1 = y/
√

−|y|2 and z1 =

cz/
√

−|z|2 where c is chosen so that 〈y1, z1〉 ∈ R<. Then there is a real reflec-
tion that interchanges P(y) and P(z) and fixes only one point of P((Fy+Fz)>),
namely P(y1 + z1).
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Proof. By scaling y and z, we may assume, without loss, that |y|2 = |z|2 = −1
and 〈y, z〉 ∈ R≤. Observe that

0 > det(gram(y, z)) = 1− |〈y, z〉|2.
So 〈y, z〉 < −1. Note that |y±z|2 = 2(−1±〈y, z〉), so |y−z|2 > 0 and |y+z|2 < 0.

One verifies that Ry−z interchanges y and z. Suppose c = P(ry+sz) is fixed
by Ry−z. Then

P(αy + βz) = Ry−zP(αy + βz) = P(αz + βy).

Since P(y) 6= P(z), it follows that, α2 = β2. So c = P(y ± z), but (y − z) has
negative norm.

4.4 Definition. Let y ∈ P(V<) and ρ ∈ ∂P(V<). A ray γ from y to ρ is a path
γ : [0,∞) → P(V<) such that limt→∞ γ(t) = ρ. Such a γ is called a parametrized
geodesic ray form y to ρ if restriction to γ to any closed interval is a parametrized
geodesic.

4.5. Exercise: Define γ : [0,∞) → P(V<) by

γt = P(cosh(t); sinh(t), 0, · · · , 0).
Note that limt→∞ γ(t) = P(1; 1, 0, 0, · · · , 0). Using cosh(s− t) = cosh s cosh t−
sinh s sinh t, verify that d(γs, γt) = |s − t| for all t, s, so γ is a parametrized
geodesic ray from P(1; 0, 0, · · · , 0) to P(1; 1, 0, · · · , 0). (Compare with the
parametrization of great circle, which is geodesic in the the sphere).

4.6 Theorem. Two points in P(V<) have a unique midpoint. So P(V<) is
uniquely geodesic.

Proof. Let γt be the geodesic in 4.5. By 4.2(b), it suffices to show that γ0 and
γ2t has a unique midpoint for any t > 0. Note that γt is a midpoint of γ0 and
γ2t. Let v = (v0; v1, v2, · · · ) such that |v|2 = −1 and P(v) is a midpoint of γ0 and
γ2t. The equation d(γ0, v) = t translates into cosh−1|v0| = t, so after changing
v by a root of unity, we may assume that v0 = cosh t. Since |v|2 = −1, we have

|v1|2 ≤
n
∑

j=1

|vj |2 = |v0|2 − 1 = sinh2(t).

So |v1| ≤ sinh t. The equation d(γ2t, v) = t translates into

|− cosh(t) cosh(2t) + v1 sinh(2t)| = cosh(t),

or equivalently (cosh(2t) − 2v1 sinh(t)) = eiθ for some θ. Rearranging, this
equation becomes

cosh2 t− v1 sinh t = (eiθ + 1)/2. (1)

Note that |cosh2 t − v1 sinh t| ≥ (cosh2 t − |v1| sinh t) ≥ (cosh2 t − sinh2 t) = 1.
So the absolute value of left hand side of (1) is alteast 1 while that of the right
hand side is atmost 1. Equality can hold if and only if eiθ = 1. Now (1) implies
v1 = sinh t. Since |v|2 = −1, we must have v2 = v3 = · · · = 0. So v = γt. So γt
is the unique midpoint of γ0 and γ2t.
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4.7 Theorem. Upto scaling, there exists a unique PU -invariant uniquely
geodesic, complete metric on P(V<).

Proof. Let d be a PU -invariant uniquely geodesic, complete metric on P(V<).
Let P(x),P(y) ∈ P(V<), l = d(P(x),P(y)). Without loss assume that |x|2 =
|y|2 = −1 and 〈x, y〉 ∈ R≤. Let f : [0, l] → X be the geodesic joining P(x)
and P(y). Any automorphism that fixes P(x) and P(y), must fix f . Given any
hyperplane H containing x and y, there is a reflection whose fixed point set
is equal to H . So Image(f) must be contained in any such hyperplane. So
Image(f) ⊆ P((Fx+ Fy)>).

By 4.3, there is an automoprhism g that interchanges P(x) and P(y) and
fixes just one point of P((Fx+Fy)>), namely P(x+ y). On the other hand, by
uniqueness of geodesic, g fixes only one point of Image(f); the midpoint f(l/2).
It follows that f(l/2) = P(x + y) must be the unique mid-point of P(x) and
P(y). So 2.4 implies that {P((l − t)x + ty) : t ∈ [0, l]} must be the image of the
geodesic segment joining P(x) and P(y).

Now suppose d1 and d2 be two PU invariant uniquely geodesic metric on
P(V<). Let lj = dj(x, y) and γj : [0, lj] → X be the geodesic from x to y
with respect to dj . Since d1 and d2 determine the same midpoints, we find
γ1(ql1) = γ2(ql2), for all diadic rational q ∈ [0, 1], By continuity, it follows that
γ1(tl1) = γ2(tl2) for all t ∈ [0, 1]. Let c = l2/l1. Since γ1 and γ2 are geodesics,
we have

d2(γ1(r), γ1(s)) = d2(γ2(cr), γ1(cs))

= c(s− r)

= cd1(γ1(r), γ1(s)),

that is, d1 and d2 agree upto scale along any geodesic segment.
Fix x ∈ V< and z ∈ V with |z|2 = 0, so that 〈x, z〉 ∈ R≥. Let Γ =

{P(x + tz) : t ∈ R≥} be the infinite geodesic ray from P(x) to the cusp P(z).
Since d1 and d2 agree on any geodesic segment upto scale, it follows that d1
and d2 agree on Γ upto scale. Without loss, assume that d1 and d2 agree on Γ.
Since d1 and d2 are PU invariant, theorem 4.2(b) implies that d1 and d2 agrees
everywhere.

4.8 Theorem. Let x, y ∈ P(V<), |x|2 = |y|2 and 〈x, y〉 ∈ R<. Then one has
the following:

(a) P(x+ y) is the midpoint of P(x) and P(y).
(b) {P(tx+(1− t)y) : t ∈ [0, 1]} is the image of the geodesic joining P(x) and

P(y).
(c) For each cusp P(ρ), there is a unique geodesic ray joining P(ρ) and P(x).

If 〈x, ρ〉 ∈ R<, then the image of this geodesic ray is {P(x+ tρ) : t ∈ [0,∞)}.

Proof. Proof of part (a) is contained in the proof of 4.7. Part (b) follows from
part (a) and part (c) follows from part (b).
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5 Projections onto subspaces and some distance
formulae

Recall that V denote a hermitian F -vector space of signature (n, 1) (see 3.1).

5.1 Definition. Given x ∈ V , define hx : P(V<) → R≥ by

hx(P(a)) = |〈x, a〉|2/(−|a|2).

If a ∈ V \ {0}, then hx(a) = hx(P(a)). Let y ∈ P(V<) and A ⊆ P(V<). We say
that p ∈ cl(A) is the projection of y onto A if the function (a 7→ d(y, a)) has a
unique minima on Acl attained attained at p. The projection of y onto A, if it
exists, will be denoted by p = prA(y).

5.2 Lemma. Let a, b, τ ∈ V with |a|2, |b|2 < 0 and τ 6= 0. Assume that
〈τ, a〉 6= 0 or 〈τ, b〉 6= 0 1. Let γ(s), s ∈ [0, d(a, b)] be the parametrized geodesic
ray joining P(a) and P(b). Then hτ (γ(s)) is a strictly convex C∞ function of s.

Proof. Assume P(a) 6= P(b). Without loss we may assume |a|2 = |b2| = −1 and
t = 〈a, b〉 is a non-positive real number. Since the span{a, b} has signature (1, 1),
we have |a|2|b2| − |〈a, b〉|2 < 0, so t < −1. Since a + b represents the midpoint
of P(a) and P(b), it suffices to check that (hτ (a) + hτ (b))/2 > hτ (a+ b). Now

hτ (a) + hτ (b)− 2hτ(a+ b) = |〈τ, a〉|2 + |〈τ, b〉|2 + 2
|〈τ, a〉+ 〈τ, b〉|2

|a+ b|2

= |〈τ, a〉|2 + |〈τ, b〉|2 + |〈τ, a〉+ 〈τ, b〉|2
t− 1

=
t|〈τ, a〉|2 + t|〈τ, b〉|2 + 2Re(〈a, τ〉〈τ, b〉)

t− 1

=
(t+ 1)(|〈τ, a〉|2 + |〈τ, b〉|2)− |〈τ, a〉 − 〈τ, b〉|2

t− 1

In the final expression, the numerator and denominator are both negative.

5.3 Lemma. Let W be a Lorentzian subspace of V . Let a ∈ W<. Then each
element of P(W<) can be represented in the form P(a+w) for some w ∈ W>∪{0}
and 〈a, w〉 = 0.

Proof. Let (a, a2, · · · , am) be a orthogonal basis of W . Let β ∈ P(W<). Then
we can write β = P(ca + c2a2 + · · · cmam). Since |ca + c2a2 + · · · cmam|2 < 0
and span{a2, · · · , am} is positive definite, c must be nonzero. So β = P(a+ w)
where w = (c2a2 + · · ·+ cmam)/c.

The linear algebra lemma below will be used freely in the subsequent com-
putations without explicit reference.

1Note that this assumption is only required if |τ |2 > 0.
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5.4 Lemma. (a) Let W be a subspace of V . Then one has W = W⊥⊥ and
rad(W ) = W ∩ W⊥ = rad(W⊥). If either W or W⊥ is a definite, then V =
W ⊕W⊥.

(b) Let 0 6= W be a proper subspace V of dimension k. Then one of the
following three exclusive possibilities hold:

(i) P(W ) meets the hyperbolic space P(V<). In this case sgn(W ) = (k− 1, 1)
and sgn(W⊥) = (n− k + 1, 0).

(ii) P(W ) does not meet P(V≤). In this case sgn(W ) = (k, 0) and
sgn(W⊥) = (n− k, 1).

(iii) P(W ) meets P(V≤) but does not meet P(V<). In this case both W ∩W⊥

is the one dimensional radical of W and W⊥.
In case (i) and (ii), the restriction of of the hermitian form to W and W⊥

are non-degenerate, V = W ⊕W⊥ and W⊥⊥ = W .

Proof. (a) One has dim(W ) + dim(W⊥) = dim(V ) for any subspace W since
the hermitiam form on V is non-degenerate. So dim(W ) = dim(W⊥⊥). But
clearly W ⊆ W⊥⊥, so we have W = W⊥⊥. It follows that rad(W ) = rad(W⊥).
Suppose Either W or W⊥ is definite. Then we must have W ∩ W⊥ = 0, so
V = W ⊕W⊥.

(b) (i) Suppose P(W ) meets P(V<). Pick v ∈ W such that |v|2 < 0. Part
(a) implies that v⊥ is positive definite. So W⊥ ⊆ v⊥ is also positive definite.
So sgn(W⊥) = (n+ 1− k, 0). Part (a) now implies that V = W ⊕W⊥. So

sgn(W ) = sgn(V )− sgn(W⊥) = (k − 1, 1).

(ii) Suppose P(W ) does not meet P(V<). Then W is positive definite, so
sgn(W ) = (k, 0) and part (a) implies that V = W ⊕W⊥. So

sgn(W⊥) = sgn(V )− sgn(W ) = (n− k, 1).

(iii) Let ρ be a null vector in V . Since the form on V is non-degenerate,
we can pick a vector x ∈ V such that 〈ρ, x〉 6= 0. Then ρ′ = x − |x|2〈x, ρ〉−1ρ
has norm 0. and 〈ρ, ρ′〉 6= 0. After changing ρ′ by a scalar, we may assume
〈ρ, ρ′〉 = 1. Let H = Fρ + Rρ′. Then H has signature (1, 1), so V = H ⊕H⊥

(by part (b)(i)). Now it follows that ρ⊥ = H⊥ + Fρ. Suppose P(W ) meets
P(V≤) but does not meet P(W ). Then W contains a null vector ρ. Then

ρF ⊆ W⊥ ⊆ ρ⊥ = H⊥ + ρF.

Since ρF ⊆ rad(ρ⊥), the quotient of ρ⊥ by ρF is a hermitian vector space and
we have W⊥/ρF ⊆ H⊥. Since H⊥ is positive definite, so is W⊥/ρF . So W⊥

has a one dimensional radical spanned by ρ.

5.5 Theorem. Let W be a Lorentzian subspace of V . Let x ∈ V . Assume that
either (i) |x|2 ≤ 0 and x /∈ W , or (ii) |x|2 > 0 and P(x⊥

≤) and P(W≤) does not
intersect. Then

(a) (W⊥ + Fx) ∩W is a negative definite vector space of dimension one.
(b) The restriction of hx to P(W<) has a unique minima at the point

P((W⊥ + Fx) ∩W ).
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Proof. (a) Note that either x⊥ is does not have a negative norm vector or x⊥

does not meet W<. In either case x⊥ does not contain W . So x /∈ W⊥ and
hence dim(W⊥ + Fx) = dim(W⊥) + 1. Since W ⊕ W⊥ = V , it follows that
(W⊥ + Fx) ∩W is one dimensional. This one dimensional subspace contains a
non-zero vector of the form a = (x+v) where v ∈ W⊥. Observe that 〈a, v〉 = 0,
so 〈x, v〉 = −|v|2. Also

|a|2 = 〈x+ v, a〉
= 〈x, a〉
= 〈x, x+ v〉
= |x|2 + 〈x, v〉
= |x|2 − |v|2.

Assume (i). Since x /∈ W , we must have v 6= 0, so |v|2 > 0 and |a|2 < 0.
Now assume (ii). Then (Fx + W⊥)⊥ = x⊥ ∩ W is positive definite. So

(Fx + W⊥) is indefinite. So there exists r1 ∈ W⊥ such that |r1|2 = 1 and
Span{x, r1} has signature (1, 1). Extend r1 to a orthogonal basis {r1, · · · , rm}
for W⊥ such that |ri|2 = 1 for all i. Then remembering 〈a, ri〉 = 0 for all i, we
get a = x−∑〈x, ri〉ri and

−|a|2 = −〈x, a〉

= −|x|2 +
m
∑

i=1

|〈ri, x〉|2

= (|〈r1, x〉|2 − |r1|2|x|2) +
m
∑

i=2

|〈ri, x〉|2.

The final expression is strictly positive, since Span{r1, x} has signature (1, 1).
(b) Lemma 5.3 implies that an arbitrary element of P(W<) can be repre-

sented in the form P(a + w) for some w ∈ W> ∪ {0} and 〈a, w〉 = 0. Now
〈x,w〉 = 〈x+ v, w〉 = 〈a, w〉 = 0. So

hx(P(a+ w)) = |〈x,a+w〉|2
−|a+w|2

= |〈x,a〉|2
(−|a|2)−|w|2

= |a|4
(−|a|2)−|w|2 .

Since w ∈ W> ∪ {0}, it follows that hx has a unique minima at w = 0.

5.6 Corollary. Let x ∈ V≤. Let {r1, · · · , rm} be a orthogonal basis for a positive
definite subspace of V . Let W = r⊥1 ∩· · ·∩r⊥m. Then the projection of P(x) onto
P(W<) is given by P(prW (x)) where

prW (x) = x−
∑

|ri|−2〈x, ri〉ri.

is simply the linear projection of the vector x onto the subspace W .
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Proof. Verify that (x−∑|ri|−2〈x, ri〉ri) belongs to W ∩ (Fx+W⊥). Now the
result follows from 5.5.

5.7 Lemma. (a) Let v, y ∈ V with |v|2 6= 0 and |y|2 = 1. Let a = v − 〈v, y〉y.
Then

|〈v,a〉|2
|v|2|a|2 = |a|2

|v|2 = 1− |〈v,y〉|2
|v|2 .

(b) If v ∈ V< and y ∈ V>, then c(v, pry⊥(v))2 = 1− c(v, y)2.

Proof. Note that 〈y, a〉 = 0. So |a|2 = 〈v, a〉 = |v|2 − |〈v, y〉|2. Part (a) follows.
Part (b) follows from part (a) since we can assume without loss that |y|2 = 1
and then pry⊥(v) = v − 〈v, y〉y.

5.8 Theorem. (a) Let r ∈ V> and x ∈ V< \ r⊥. Then

d(P(x),P(r⊥<)) = sinh−1
√

−c(x, r)2.

(b) Let r, x ∈ V> such that span{r, x} is Lorentzian. Then

d(P(r⊥<),P(x
⊥
<)) = cosh−1 c(r, x).

Proof. Theorem 5.5 implies that d(x, r⊥) = d(x, prr⊥(x)). One has

sinh2 d(x, r⊥) = cosh2 d(x, r⊥)− 1

= cosh2 d(x, prr⊥(x)) − 1

= c(x, prr⊥(x))
2 − 1

= −c(x, r)2.

(b) Without loss assume |x|2 = |r|2 = 1. Let v ∈ r⊥< . The distance between
P(v) and P(x⊥

<) is minimized uniquely at prx⊥(v). So

cosh2 d(v, x⊥) = c(v, prx⊥(v))2

= 1− c(v, x)2

= 1 + hx(v).

Theorem 5.5 (under assumption (ii)) implies that hx has a unique minima on
P(r⊥<) at P((Fr + Fx) ∩ r⊥) = P(x − 〈x, r〉r). So inf{d(α,P(x⊥

<)) : α ∈ P(r⊥<)}
is attained at the unique point P(a) where a = x− 〈x, r〉r. So

cosh2 d(x⊥, r⊥) = 1− c(a, x)2

= 1− |〈x,a〉|2
|x|2|a|2

= 1− (1 − |〈x,r〉|2
|x|2 )

= c(x, r)2.

where the third equality uses part (a) of lemma 5.7. Part (b) follows.
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6 Horoballs

6.1 Definition. Let ρ ∈ V be a null vector. Define dρ : P(V<) → R by

dρ(P(x)) = log(hρ(x))
1/2 = log(|〈ρ, x〉|/(−|x|2)1/2).

If x ∈ V<, we let dρ(x) = dρ̄(P(x)). The set

Bk(ρ) = {P(x) ∈ P(V<) : hρ(x) < k2}

is called an open horoball centered at ρ.

6.2 Remark. Let ρ̄ be a cusp of P(V<). Note that if ρ and ρ1 are two null
vectors such that P(ρ) = P(ρ1) = ρ̄, then dρ and dρ1

differ by a constant, so
((x, y) 7→ (dρ(x)− dρ(y))) depends only on the cusp ρ̄ and not on the choice of
the lift ρ. So we can write dρ(x) − dρ(y) = dρ̄(x) − dρ̄(y). If dρ(x) = k, then it
is convenient to think that the distance of P(ρ) and x is (∞ + k), so that the
difference of the distances (dρ(x) − dρ(y)) is well defined. So Bk(ρ) is a ball or
radius (∞+ k) around ρ.

6.3 Theorem. Let ρ̄ be a cusp of V . Let x, y ∈ V<. One has
(a) The triangle inequality for ideal triangles: |dρ̄(x) − dρ̄(y)| ≤ d(x, y).
(b) The equality dρ̄(x)− dρ̄(y) = d(x, y) holds if and only if P(y) lies on the

geodesic ray joining ρ̄ and P(x).

Proof. (a) Choose ρ such that P(ρ) = ρ̄. Let α = 〈ρ, x〉, β = 〈y, ρ〉 and γ =
〈x, y〉. By changing ρ, x, y by units if necessary, we may assume, without loss,
that, |x|2 = |y|2 = −1. If ρ, x, y are linearly independent then their span has
signature (2, 1), so det(gram(ρ, x, y)) < 0, otherwise det(gram(ρ, x, y)) = 0. So
we have

0 ≥ det(gram(ρ, x, y)) = det
( 0 α β̄

ᾱ −1 γ
β γ̄ −1

)

= |α|2 + |β|2 + 2Re(αβγ)

≥ |α|2 + |β|2 − 2|αβγ|.

It follows that

coshd(x, y) = |γ| ≥ 1
2 (

|α|
|β| +

|β|
|α|) =

1
2 (e

dρ(x)−dρ(y) + edρ(y)−dρ(x))

= cosh|dρ(x) − dρ(y)|.

Since (t 7→ cosh t) is strictly increasing for t ∈ [0,∞), the triangle inequality
follows.

(b) Suppose P(y) lies on the geodesic ray joining P(ρ) and P(x). Then
ρ, x, y are linearly dependent, so the calculation in part (a) show that d(x, y) =
|dρ(x) − dρ(y)|. Now, without loss, assume 〈ρ, x〉 ∈ R< and |x|2 = −1. If
P(y) is on the geodesic ray joining P(x) and P(ρ), then 4.8(c) implies that
P(y) = P(x+ tρ) for some t ≥ 0. So

e2dρ(y) = |〈x,ρ〉|2
−|x+tρ|2 = |〈x,ρ〉|2

1−2t〈x,ρ〉 < |〈x, ρ〉|2 = e2dρ(x).
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So dρ(x) > dρ(y) and hence d(x, y) = dρ(x)− dρ(y).
Conversely, suppose y is such that dρ(x) − dρ(y) = d(x, y). One computes

cosh2 d(P(x + tρ),P(x)) = (1 − t〈x, ρ〉)2/(1 − 2t〈x, ρ〉). Note that both the
numerator and the denominator are positive and the numerator is quadratic in
t while the denominator is linear, so cosh2 d(P(x + tρ),P(x)) → ∞ as t → ∞.
So we can choose y′ such that P(y′) is on the geodesic joining P(x) and P(ρ)
and d(x, y′) = d(x, y). Then

dρ(y
′) = dρ(x)− d(x, y′) = dρ(x)− d(x, y) = dρ(y).

If possible, suppose P(y) 6= P(y′). Let m be the midpoint of P(y) and P(y′).
Then 5.2 implies that dρ(m) < dρ(y) and d(x,m) < d(x, y). So using part (a),
we have

dρ(x) ≤ dρ(m) + d(m,x) < dρ(y) + d(y, x) = dρ(x).

which is a contradiction. So we must have P(y) = P(y′).

The lemma 6.4 below shows that a horoball around ρ is the limsup of a
sequence of balls as the center of the balls converge to ρ and the radius tends
to infinity in an appropriate rate.

6.4 Lemma. Let ρ be a null vector and x ∈ V< such that 〈ρ, x〉 = −1. Let
Bǫ be the ball of radius cosh−1( k√

2ǫ
) centered at P(ρ + ǫx). Then Bk(ρ) =

limc→0 ∪ǫ<cBǫ.

Proof. One has P(y) ∈ Bǫ if and only if

k2 > 2ǫ
|〈y, ρ〉+ ǫ〈y, x〉|2
|y|2|ρ+ ǫx|2

=
|〈y, ρ〉+ ǫ〈y, x〉|2
|y|2(12ǫ|x|2 − 1)

=: f(ǫ) (say)

Since 0 ≤ − det(gram(ρ, x, y)) = 2Re(〈x, y〉〈y, ρ〉) + |x|2|〈y, ρ〉|2 + |y|2, we have

d

dǫ
f(ǫ)

∣

∣

∣

ǫ=0
=

2Re(〈x, y〉〈y, ρ〉) + 1
2 |x|2|〈y, ρ〉|2

−|y|2 ≥ − 1
2 |x|2|〈y, ρ〉|2 − |y|2

−|y|2 ≥ 1.

Note that P(y) ∈ limc→0

⋃

ǫ<cBǫ if and only if there exists a sequence ǫn → 0
such that P(y) ∈ Bǫn for all n, that is, k2 > f(ǫn) for all n. Since f is an
increasing function at 0, we have k2 > f(0) = |〈y, ρ〉|2/(−|y|2), that is, P(y) ∈
Bk(ρ). Conversely, if P(y) ∈ Bk(ρ), then k2 > f(0), so k2 > f(ǫ) for ǫ small
enough, that is P(y) ∈ limc→0

⋃

ǫ<cBǫ.
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7 Convexity and projections

7.1 Definition (convex hull). Let a, b ∈ P(V<). Recall that [a, b] denotes the
real geodesic segment joining a and b. Say that K ⊆ P(V<) is (geodesically)
convex, if a, b ∈ K implies [a, b] ⊆ K.

Let K be a subset of P(V<). Since an intersection of convex sets is convex,
the intersection of all the convex sets containing K is the smallest convex set
containing K; it is called the convex hull of K and denoted by hull(K). Let
K0 = K and define Kn inductively by Kn+1 = ∪x,y∈Kn

[x, y]. One verifies that
Kn ⊆ hull(K) and ∪nKn is convex, so hull(K) = ∪nKn.

7.2 Lemma. If K is a subspace of V , then P(K<) is a convex. The open and
closed balls and horoballs are convex.

Proof. The geodesic joining P(a) and P(b) is contained in P(span(a, b)), So for
every subspace K, P(K<) is convex. Open balls and horoballs are sets of the
form {P(v) : hτ (v) < r} for some τ ∈ V≤ and r ∈ R>. So 5.2 implies that balls
and horoballs are convex.

7.3 Lemma. Let a, b ∈ V<, and τ ∈ V \ {0}. Assume that hτ (b) > hτ (a) > 0.
Let γ : [0, d(a, b)] → P(V<) be the geodesic from P(a) to P(b).

(a) The following are equivalent:
(i) t 7→ hτ (γ(t)) is a strictly increasing function.
(ii) hτ increases if we move a little bit from P(a) towards P(b) along γ, or

in other words, d
dthτ (γ(t))|t=0 > 0.

(iii) Re
(

〈τ,b〉〈a,a〉
〈a,b〉〈τ,a〉

)

> 1.

(b) The function hτ restricted to γ has a unique maxima at b.
(c) If c ∈ V< such that P(b) lies on the geodesic joining P(a) and P(c), then

hτ is strictly increasing along the geodesic going from P(b) to P(c). In particular
hτ (c) > hτ (b).

Proof. (a) The equivalence of (i) and (ii) follows from 5.2. Let b1 = −〈b, a〉−1b so
that 〈a, b1〉 = −1. Now P(a+ tb1), t ≥ 0, parametrizes the geodesic ray starting

at a and moving towards b. So (ii) is equivalent to d
dt

(

hτ (a+ tb1)
)

∣

∣

∣

t=0
> 0. One

has
d

dt

(

hτ (a+ tb1)
)

∣

∣

∣

t=0
=

2Re(〈a, τ〉〈τ, b1〉)
−|a|2 − 2|〈τ, a〉|2

(−|a|2)2 .

The quantity on the right is positive if and only if Re
(

〈τ,b1〉〈a,a〉
〈τ,a〉(−1)

)

> 1.

(b) Part (b) holds since hτ |[a,b] is strictly convex and hτ (a) < hτ (b).
(c) Since hτ |[a,b] attains its maximum at b, the function hτ |[a,c] is strictly

increasing at b (when we move towards c). Since hτ |[a,c] is convex, it remains
strictly increasing on [b, c].

7.4 Remark. Let a, b ∈ P(V<) and γ be the infinite geodesic ray that contains
them. Lemma 5.2 implies that the distance function f from a point in the
hyperbolic space or from a cusp or from a mirror measured along γ looks like
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a parabola, attaining its minima at a unique point m ∈ γ. Lemma 7.3 lets us
decide whether a and b are on the same side of m or not. If they are on the
same side of m, then the distance function f is monotone along the geodesic
segment [a, b], otherwise it decreases first and then increases.

7.5 Lemma. Let B be an open ball or a horoball inside P(V<). Then the
geodesic segment joining a point inside B and a point outside B intersects ∂B
at a unique point.

Proof. Let B be an open ball or horoball centered at a. Let u ∈ B and x ∈
P(V<) \ B. Let γ : [0, 1] → P(V<) be the parametrized geodesic joining u
and x. Let t0 = inf{t : γ(t) /∈ B}. Then verify that v = γ(t0) ∈ ∂B. Since
d(a, v) > d(a, u) and v lies on the geodesic joining u and x, 7.3(c) implies that
the function d(a, ·) is strictly increasing along [v, x], so γ(t) /∈ cl(B) for any
t ≥ t0. On the other hand γ(t) ∈ B for all t ≤ t0 by definition of t0.

7.6 Lemma. Let C be a convex subset of P(V<) and x ∈ P(V<). Then there
exists a unique y ∈ cl(C) such that d(x, y) = d(x,C). So y = prC(x).

Proof. Since d(x,C) = d(x, cl(C)) and closure of a convex set is convex (see
2.10), assume without loss that C is closed and convex. Suppose y and y′ were
two distinct points in C such that d(x, y) = d(x, y′) = d(x,C). Since C is
convex, the midpoint m(y, y′) ∈ C and 5.2 implies d(x,m(y, y′)) < d(x,C).
This contradiction proves that y must be unique.

If x ∈ C, then d(x,C) = 0, so x = prC(x). Assume, x /∈ C. Let d0 = d(x,C).
Since the hyperbolic space is a proper metric space, Cn = cl(Bd0+1/n(x)) ∩ C
are a decreasing sequence of non-empty compact sets for n ≥ 1. So ∩nCn 6= ∅.
If y ∈ ∩nCn, then y satisfies d0 = d(x,C).

7.7 Remark. If A is a bounded subset of P(V<) and C is a convex set, then
there exists y ∈ cl(C) such that d(A, y) = d(A,C) but such an y need not be
unique. For example, let f : [0, 3] → P(V<) be a parametrized geodesic. Let
A = {f(0), f(3)} and C = Im(f |[1,2]). Then both y = f(1) and y = f(2) satisfy
d(A, y) = d(A,C).

The following lemma may sometimes be used to calculate the projection onto
a convex set.

7.8 Lemma. Let C be a convex subset of P(V<) and x ∈ P(V<) \C. Then any
automorphism of P(V<) that fixes both C and x also fixes prC(x).

Proof. Follows from the uniqueness of the projection.

7.9 Theorem. Let a ∈ V≤, let B be a ball (or horoball) centered at a and
x ∈ P(V<) \B. Then prB(x) = [a, x] ∩ ∂B.

Proof. Let B = Br(a) be a ball. Let d0 = d(a, x). Lemma 7.2 and 7.6 implies
that p = prB(x) exists. Let y = [a, x] ∩ ∂Br(a) (see 7.5). Then d(y, x) =
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d(a, x) − d(a, y) = d0 − r. So d(p, x) ≤ (d0 − r). Since p ∈ cl(B), we have
d(a, p) ≤ r. But

d0 = d(a, x)

≤ d(a, p) + d(p, x)

≤ (d0 − r) + r.

So both the previous inequalities must be equalities. Hence d(a, p) = r and
d(p, x) = d0 − r, and d(a, x) = d(a, p) + d(p, x). So p is on the geodesic [a, x] by
1.9. This proves the lemma for a ball. The argument for a horoball is similar,
using 6.3.

7.10 Remark. From 7.9 and 6.3 we find that if ρ is a null vector and x /∈ B1(ρ),
then dρ(x) = d(B1(ρ), x).

7.11 Definition. Let A andK be non-empty subsets of P(V<). IfK is bounded,
define

mdA(K) = inf{t ≥ 0: K ⊆ Bt(A)} = sup{d(A, z) : z ∈ K}.
In other words, mdA(K) is the radius of the smallest closed ball around A that
contains K.

7.12 Lemma. Let A ⊆ P(V<).
(a) If K1 ⊆ K2 are bounded subsets of P(V<), then mdA(K1) ≤ mdA(K2).
(b) Let {Ki : i ∈ I} be a collection of subsets of P(V<) such that ∪i∈IKi is

bounded. Then mdA(∪iKi) = sup{mdA(Ki) : i ∈ I}.
Proof. Routine exercise.

7.13 Lemma. Let A be a point or a hyperplane in P(V<). Then one has
(a) If x, y ∈ P(V<), then mdA([x, y]) = max{d(A, x), d(A, y)}.
(b) If K is any bounded subset of P(V<), then mdA(hull(K)) = mdA(K).

Proof. (a) If A ∈ P(V<), let τ ∈ V< such that A = P(τ). If A is a hyperplane,
let τ ∈ V> such that A = P+(τ⊥< ). In either case, d(A, y) is a increasing function
of hτ (y). So part (a) follows from lemma 5.2.

(b) Recall that hull(K) = ∪nKn, where K0 = K and Kn+1 = ∪x,y∈Kn
[x, y].

Suppose D ≥ 0 such that mdA(Kn) < D. Let x, y ∈ Kn. Then d(A, x) ≤ D
and d(A, y) ≤ D. So part (a) implies mdA([x, y]) ≤ D. So, using 7.12, we have

mdA(Kn+1) = mdA(∪x,y∈Kn
[x, y])

= sup{mdA([x, y]) : x, y ∈ Kn}
≤ D.

By induction on n, it follows that mdA(Kn) ≤ mdA(K) for all n. So

mdA(hull(K)) ≤ sup{mdA(Kn) : n ≥ 0}
≤ mdA(K).
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8 The exponential map

8.1 Definition. Let G be an abelian group. A G-torsor is a set X with a simple
transitive action of G. Each x ∈ G gives us a bijection rx : G → X given by
rx(g) = g+ x. Let B be a set. Then G acts on Fun(B,X), the action of g takes
a function (b 7→ f(b)) to the function (b 7→ g + f(b)). So f and f ′ are in the
same orbit of G if and only if there is a g ∈ G such that f(b) = g + f ′(b) for all
b ∈ B. For each x ∈ X , we have an isomorphism

Fun(B,G) → Fun(B,X) given by φ 7→ rx ◦ φ.

Observe that if x, y ∈ X , then rx ◦φ ≡ ry ◦f mod G. So The above map induces
a surjection Fun(B,G) → Fun(B,X)/G that does not depend on the choice of
x. One verifies that in the above correspondence φ ≡ φ′ mod G if and only if
rx ◦ φ ≡ ry ◦ φ′ mod G for all x, y ∈ X , φ, φ′ ∈ Fun(B,G). Thus there is a
natural isomorphism

Fun(B,X)/G ≃ Fun(B,G)/G.

Let U is a vector space. An U torsor is called an affine space for U . We let
Affine(U) denote an affine space of U .

The discussion above obviously does not require G to be abelian. We made
that assumption only to maintain consistency of notation, when we later use
the notion of a torsor for an affine space.

8.2 Definition. Let F = R or C. Let V be a hermitian F -vector space of
signature (n, 1). Let P(V<) be the hyperbolic space of V . Let v be a nonzero
vector of V such that |v|2 ≤ 0. If |v|2 6= 0, then choose v′ = −|v|−2v. If |v|2 = 0,
choose any v′ ∈ V such that |v′|2 = 0 and 〈v, v′〉 = −1. Define

jv : V< → v⊥ by jv(x) = −〈x, v〉−1x− v′.

jv induces a map jv : P(V<) → v⊥ such that jv ◦ P = jv.

8.3 Remark. ◦ Suppose |v|2 < 0. Then jv(x) = − projv⊥(x)/〈x, v〉. Note
that P(v) determines the map jv as an element of Fun(P(V<),P(v⊥)). If
c ∈ F , then jcv(x) = c̄−1jv(x). So we often scale v and assume that
|v|2 = −1.

◦ Suppose |v|2 = 0. In this case, the definition of the map j depends on
the choice of v′. There is a v⊥ worth of choice of v′. So v determines jv
upto translation by an element of v⊥; in other words v determines jv as
an element of Fun(P(V<),Affine(v⊥))/v⊥.

8.4 Lemma. Suppose |v|2 = −1. Define sv : B1(v
⊥) → V< by sv(u) = v + u.

Then
(a) Then jv and P◦sv are mutually inverse homeomorphisms between P(V<)

and B1(v
⊥). The homeomorphism jv takes 0 to P(v) and a ball or radius r

around P(v) in P(V<) to a ball or radius tanh(r) around 0 in v⊥.
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(c) jv maps lines and hyperplanes in P(V<) passing through P(v) to lines
and hyperplanes in v⊥ passing through 0.

(d) The map jv : P(V<) → v⊥ is equivariant under Stabv(Aut(V )). The map
P ◦ jv : P(V<) → P(v⊥) is equivariant under StabP(v)(Aut(P(V<))).

(e) Let H be a hyperplane through P(v). Under the identification of P(V<)
and v⊥ by jv, the hyperbolic reflection in H correspond to ordinary Euclidean
reflection in the hyperplane jv(H).

Proof. (b) Pick x ∈ V<. One has |〈x, v〉|2/(−|x|2) = cosh2 d(x, v). Let p =
projv⊥(x) = x + 〈x, v〉v. Then 〈v, p〉 = 0, so 〈p, p〉 = 〈x, p〉 = |x|2 + |〈v, x〉|2.
Note that jv(x) = −p/〈x, v〉. So

|jv(x)|2 = 1 + |x|2
|〈v,x〉|2 = 1− cosh−2 d(x, v) = tanh2 d(x, v).

If u is in the unit ball in v⊥, then (u + v) ∈ V< and one verifies directly that
u 7→ P(v + u) is the inverse to the map jv.

(c) Let H be a hyperplane in P(V<) through P(v). Then H = P(s⊥<) for
some non-zero vector s ∈ v⊥. Let x ∈ V<. Note that

〈s, jv(x)〉 = 〈s, x〉/〈v, x〉.

So P(x) ∈ H⊥ if and only if 〈x, s〉 = 0 if and only if 〈s, jv(x)〉 = 0 if and only if
jv(x) ∈ s⊥ ∩ v⊥.

8.5 Remark. Assume |v|2 = −1. One may scale jv to make sure that the eu-
clidean distance between jv(P(v)) = 0 and jv(P(x)) is the same as the hyperbolic
distance between P(v) and P(x). This defines the maps

logv(P(x)) =
d(x, v)

tanh(d(x, v))
jv(x) =

tanh−1|jv(x)|
|jv(x)|

jv(x)

and its inverse
expv(u) = P(|u|−1 tanh(|u|)u + v).

The map expv : { unit ball in v⊥} → P(V<) has the property that it maps 0
to v, takes straight lines through 0 to geodesic rays and preserves lengths along
these rays. So this is the exponential map in the sense of Riemannian geometry.

8.6 Lemma (Need to be fixed, since the definition of jv has been changed by
a sign). Suppose |v|2 = 0. Fix v′ such that |v′|2 = 0 and 〈v, v′〉 = −1. Let
M = v⊥ ∩ v′⊥.

(a) j(P(v′)) = 0 and j(P(v)) = ∞.

(b) The map j maps the horoball P{x ∈ V< : |〈v,x〉|√
−|x|2

< r} isomorphically

onto
Cv,r = {w − c

2v : w ∈ M, c ∈ F, |w|2 < Re(c)− r−2}.
Let Cv = Cv,∞. Then j−1

v : Cv → P(V<) is given by jv(u) = P(u− v′).
(c) j maps geodesic rays and hyperplanes through P(v) to affine lines and

affine hyperplanes in v⊥ and in v⊥/v.
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(d) Let g ∈ Aut(V ) such that gv = v. Then there exists w ∈ v⊥ such that

jv(gξ) = gjv(ξ) + w for all ξ ∈ P(V<).

So jv is Stabv(Aut(V ))-equivariant, upto translation by an element of v⊥.
(e) Let F = R. Consider the map J : P(V<) → v⊥/v determined by j. Let

H be a hyperplane in P(V<) through P(v). Then J(H) is an affine hyperplane
in v⊥/v and RJ(H) ◦ J = J ◦RH .

Proof. (b) Each u ∈ v⊥ can be uniquely written in the form u = w − c
2v where

w ∈ M , c ∈ F . We calculate

|u− v′|2 = |w|2 − Re(c).

If u = j(x) for some x ∈ P(V<), then |u − v′|2 < 0, so |w|2 < Re(c), that is,
j : P(V<) → Cv. Conversely, if u ∈ Cv, then (u − v′) has negative norm, so
k(u) = P(u − v′) is a well defined map from k : Cv → P(V<). One verifies that
k and j are inverse to each other.

Let x ∈ V<. Write j(x) = w − c
2v with w ∈ M . Then |w|2 − Re(c) =

|j(x) − v′|2 = |x|2/|〈v, x〉|2. So x belongs to the given horoball if and only if
|x|2/|〈v, x〉|2 < −1/r2, if and only if |w|2 − Re(c) < −1/r2, that is j(x) ∈ Cv,r.

(e) Choose s ∈ V< such that s2 = 2 and s⊥ = H . Since H passes through
P(v), one has 〈s, v〉 = 0. So

〈s, j(x)〉 = 〈s, x〉〈v, x〉−1 + 〈s, v′〉.

It follows that P(x) ∈ s⊥ if and only if j(x) ∈ {u ∈ v⊥ : 〈s, u〉 = 〈s, v′〉}. So
j(H) is an affine hyperplane in v⊥. Note that u ∈ j(H) implies u+ vR ⊆ j(H),
that is, the hyperplane j(H) is parallel to the line vR. So j(H) projects onto a
proper hyperplane in v⊥/v.

Let x ∈ V<. Let j(x) = u. One has x = j−1(u) = P(u− v′). Now

J ◦RH(x) = J ◦RH(P(u−v′)) = J(u−v′−〈s, u−v′〉s) = u−〈s, u−v′〉s mod v,

where the last equality uses 〈v, u−v′−〈s, u−v′〉s〉 = −〈u, v′〉 = 1. It follows that
J ◦RH(x) = Rs(u) + 〈s, v′〉s mod v. Observe that (Rs(u) mod v) only depends
on (u mod v). To finish, note that (u mod v) 7→ (Rs(u) + 〈s, v′〉s) mod v is the
affine reflection in the hyperplane J(H).
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9 The tangent space

Recall that the topology on P(V ) is induced from V by the quotient map P :
V → P(V ). In other words, a subset U of P(V ) is open if and only P−1(U) is
open in V in its Euclidean topology.

9.1 Lemma. Let α ∈ P(V ) be a line containing a non-null vector. Then

Uα = {β ∈ P(V ) : β * α⊥}

is an open neighborhood of α. One has an isomorphism φα : Uα →
Hom(α, α⊥) ≃ Hom(α, V/α).

Proof. The set Uα is open since P−1(Uα) = V −α⊥ is open in V . (Note that Uα

is open even when α is a line spanned by a null vector but in this case α /∈ Uα).
Given β ∈ Uα, define φα(β) : α → α⊥ to be the linear map that takes πα(b)

to πα⊥(b) where b ∈ β \ {0}. Conversely, for φ : Hom(α, α⊥), let graph(φ) =
{v + φ(v) : v ∈ α} ∈ Uα be the graph of this linear map. One verifies that
φα and graph are well defined and are mutually inverse isomorphisms. Finally
the isomorphism Hom(α, α⊥) ≃ Hom(α, V/α) is induced by the isomorphism
πα : V/α → α⊥.

9.2. Next we want to describe the tangent space Tα(P(V<)) to P(V<) at a point
α in a concrete manner. By this we mean the tangent space to P(V<) as a
differentiable manifold in the real case and the holomorphic tangent space in
the complex case. A tangent vector is specified by (the germ of) a curve in
P(V<). By a curve we mean a differentiable (resp. holomorphic) map from a
small neighborhood of 0 to P(V<) in the real (resp. complex) case.

Let α ∈ P(V<). Then P(V<) ⊆ Uα since α⊥ is positive definite. So φα :
P(V<) →֒ Hom(α, α⊥) lets us identify the projective model of the complex
hyperbolic space inside the vector space Hom(α, α⊥).

Choose v ∈ α with v2 = −1. We get an identification jv : P(V<) → B1(v
⊥).

This gives an identification σ : B1(v
⊥) →֒ Hom(α, α⊥). Unfolding the defini-

tions, we find that (σ(y) : v 7→ y). Note that σ is a linear map (or rather a
restriction of a linear map to B1(v

⊥)).
Thus we have identified P(V<) with B1(α

⊥) and also with a subset of
Hom(α, α⊥) so that one can go between these identifications by a linear map
σ. A curve γ in P(V<) with γ(0) = α determines a curve in B1(α

⊥) (resp. in
Hom(α, α⊥)) and by differentiating at 0 we get elements in the tangent space of
T0B1(α

⊥) (resp. in T0Hom(α, α⊥)). As is usual for Euclidean spaces, we have
canonical identifications: α⊥ = T0B1(α

⊥) and Hom(α, α⊥) = T0 Hom(α, α⊥).
Thus we get two concrete realizations of a tangent vector in P(V<): as a vector
in Hom(α, α⊥) and as a vector in α⊥. The first description has the advan-
tage that the map φα : P(V<) →֒ Hom(α, α⊥) and hence the identification
(φα)∗ : Tα(P(V<)) ≃ Hom(α, α⊥) is canonical. In contrast, the identification
of P(V<) ≃ B1(α

⊥) depends on the choice of a norm −1 vector in α. However
the second description has the advantage that B1(α

⊥), comes with ready made
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coordinates. We can easily move between these descriptions via σ: note that
the derivative of σ is equal to σ since σ is linear.

9.3 Lemma. Let u ∈ V< and x ∈ Tu(V<). Choose v ∈ V such that |v|2 = −1
and P(u) = P(v). Then djv : Tv(V<) → T0(B1(v

⊥)) is given by djv(x) =
(

v
u

)

πv⊥(x) when we make the identifications Tu(V<) = V and T0(B1(v
⊥)) = v⊥.

Proof. Recall that jv(x) = −πv⊥(x)/〈x, v〉. Let Γ(t) = u+ tx. Then x = Γ′(0).
One has

(jv ◦ Γ)′(t) =
d

dt

(−πv⊥(u+ tx)

〈u + tx, v〉
)

=
−πv⊥(x)

〈u+ tx, v〉 +
πv⊥(u+ tx)

〈u + tx, v〉2 〈x, v〉

For the second equality, note that differentiation commutes with πv⊥ since pro-
jection to a subspace is a linear map. Substituting t = 0, and remembering
u ∈ v⊥, we get

djv(x) = (jv ◦ Γ)′(0) = −πv⊥(x)

〈u, v〉 =
u

v
πv⊥(x).

9.4 Lemma. Let u1, u2 ∈ V< such that P(u1) = P(u2). Let xj ∈ Tuj
(V<) = V

for j = 1, 2. Choose v such that |v|2 = −1 and P(v) = P(u1). Then the following
are equivalent:

(i) dP(x1) = dP(x2).
(ii) djv(x1) = djv(x2).
(iii) πv⊥(x2) = (u2/u1)πv⊥ (x1).

Proof. Lemma 9.3 implies that (ii) holds if and only if (v/u2)πv⊥(x2) =
(v/u1)πv⊥(x1) or equivalently πv⊥(x2) = (u2/u1)πv⊥(x1). This proves the
equivalence of (ii) and (iii). The equivalence of (i) and (ii) follows from 9.2.

9.5 Remark. It is instructive to note the following alternative way to show (iii)
implies (i) in 9.4. Let Γj(t) = (uj + txj). Then xj = Γ′

j(0). Assume (iii). Then
πu⊥

1
((u1/u2)x2) = πu⊥

1
(x1), so (u1/u2)x2 = x1 + λu1 for some scalar λ. Now

P(u2+ tx2) = P(u1 + t(u1/u2)x2) = P(u1 + t(x1 +λu1)) = P(u1+
t

1+tλx1), that
is P ◦Γ2(t) = P ◦Γ1(t/(1+λt)), that is, Γ1 and Γ2 determine the same curve in
P(V<) upto reparametrization. This implies (i).

9.6 Theorem. (a) Let v ∈ V such that |v|2 = −1. Then y ∈ Tv(V<) corre-
sponds to the tangent vector (a 7→ (av )πv⊥(y)) ∈ Hom(P(v), v⊥).

(b) Let γ(t) be a curve in P(V<) defined for t in a neighborhood of 0. The tan-
gent vector γ′(0) corresponds to the vector (a 7→ a

Γ(0)Γ
′(0)) in Hom(γ(0), γ(0)⊥)

where a ∈ γ(0) and Γ(t) is any lift of γ(t) to V<.
Choose v ∈ γ(0) having norm −1. Then the tangent vector γ′(0) corresponds

to the vector (jv ◦ γ)′(0) ∈ v⊥ = T0(B1(v
⊥)). One can go between the two

descriptions of the tangent vector via the map σ.

29



Proof. (a) Recall from 9.2 that the tangent vector dP(y) ∈ Hom(P(v), v⊥) cor-
responds to the tangent vector djv(y) ∈ T0(B1(v

⊥) under dσ = σ. Applying
lemma 9.3 with u = v, we obtain djv(y) = πv⊥(y). So dP(y) is given by the map
(v 7→ πv⊥(y)) ∈ Hom(P(v), v⊥). This proves part (a). Part (b) follows from
part (a) and 9.3.

9.7. We shall write Tα = Hom(α, α⊥). There is a natural positive definite
hermitian form gα on Tα coming from the hermitian form on α⊥. Given σ1, σ2 ∈
Tα, define

gα(σ1, σ2) = 〈σ1(a), σ2(a)〉/(−〈a, a〉)
where a is any non-zero vector in α. If gα(σ1, ·) = 0, then 〈σ1(a), σ2(a)〉 = 0 for
all σ2. So 〈σ1(a), y〉 = 0 for all y ∈ α⊥ and this implies σ2(a) = 0 since α⊥ is
positive definite. It follows that σ2 = 0. So gα is a positive definite hermitian
form on Tα. This Hermitian form is clearly invariant under the U(n, 1) action.
In the complex case, this gives P(V<) the stucture of a hermitian manifold. The
Riemannian metric on P(V<) is given by the real part of g and Im(g) makes
P(V<) into a symplectic manifold.

9.8 Lemma. Let v be a vector in V< of norm −1 and let α = P(v). Let
v1, v2 ∈ V be two vectors representing tangent vectors at v. Then they determine
tangent vectors P∗(v1), P∗(v2) in TαP(V<). One has

gα(P∗(v1)),P∗(v2)) = 〈πv⊥(v1), πv⊥(v2)〉 = 〈v1,v2〉〈u,u〉−〈v1,u〉〈u,v2〉
〈u,u〉

where u is any nonzero vector in α.

9.9. Computing distances between points : Let dg be the distance func-
tion on P(V<) determined by the Riemannian metric Re(g). To compute dg,
first note that dg is clearly U(n, 1) invariant, since g is. Since the U(n, 1) action
is transitive on the set of equidistant points, it is enough to calculate dg on one
geodesic ray. Consider the curve in V< given by γ(t) = (cosh t; sin t, 0, · · · , 0)
and let Γ(t) = P(γ(t)). Let us calculate dg(Γ(0),Γ(T )). One has γ′(t) =
(sinh t; cosh t, 0, · · · , 0). So 〈γ(t), γ′(t)〉 = 0 for all t and |γ′(t)|2 = 1 = −|γ(t)|2.
Lemma 9.8 gives

|Γ′(t)|2g := gΓ(t)(Γ
′(t),Γ′(t)) = (|γ′(t)|2|γ(t)|2 − |〈γ(t), γ′(t)〉|2)/〈γ(t), γ(t)〉 = 1.

So dg(Γ(0),Γ(t)) =
∫ t

0
|Γ′(s)|2gds =

∫ t

0
1 · ds = t = d(Γ(0),Γ(t)). Given any two

points a, b ∈ P(V<), there exists g ∈ PU(n, 1) such that ga = Γ(0) and gb = Γ(t)
for some t. Since dg and d are both U(n, 1) invariant and they agree on the ray
Γ(t), it follows that they agree everywhere.
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10 Real hyperbolic space

10.1 Definition (the hyperboloid model and the projective model). Let Rn,1

denote the vector space Rn+1 with the signature (n, 1) bilinear form

〈x, y〉 = −x0y0 + x1y1 + · · ·+ xnyn

where x = (x0, x1, · · · , xn) and y = (y0, y1, · · · , yn). We write x2 = 〈x, x〉.
The hyperboloid model of the n dimensional real hyperbolic space is:

Hn = {x ∈ Rn,1 : x2 = −1, x0 > 0}.

Note that if x ∈ Hn, then x2
0 = 1 + x2

1 + · · ·+ x2
n and x0 > 0, so x0 > 1.

The projective model of the n dimensional real hyperbolic space is:

P−(R
n,1) = P{x ∈ Rn,1 : x2 < 0}.

The map (x 7→ P(x)) sets up the isomorphism between the two models.

10.2 Remark. Let S = {x = (x0, · · · , xn) ∈ Rn,1 : x2 = −1}. If x ∈ S, then
|x0| ≥ 1, so the hyperplane {x ∈ Rn,1 : x0 = 0} divides S into two connected
components, Hn and −Hn. Fix y ∈ Hn. Since Hn is connected and y⊥ does
not meet Hn, the continuous function v 7→ 〈v, y〉 retains the same sign on all
of Hn. Since 〈y, y〉 < 0, it follows that 〈v, y〉 < 0 for all v ∈ Hn, and hence
〈u, y〉 > 0 for all u ∈ −Hn. So, if we fix y ∈ Hn, then we can write

Hn = {x ∈ Rn,1 : x2 = −1, 〈x, y〉 < 0}.

This is an useful observation. Given x ∈ S, if we want to check x ∈ Hn, we can
just verify 〈x, y〉 < 0 for a suitable chosen y ∈ Hn. In the definition of Hn we
had chosen y = (1, 0, · · · , 0).

In general, let V be a real inner product space of signature (n, 1). To define
a hyperboloid model in V , we need to choose and fix a vector y ∈ V such that
y2 = −1 and then define the hyperbolic space

H(V, y) = {x ∈ V : x2 = −1, 〈x, y〉 < 0}.

10.3 Lemma. Let x, y ∈ Hn. Then 〈x, y〉 ≤ −1, or equivalently, (x − y)2 ≥ 0.
Equality holds if and only if x = y.

Proof. Let x ∈ Hn. If x and y are linearly dependent, then x = cy, taking norm
c = ±1, so x = ±y, but −y /∈ Hn, so x = y. So if x 6= y, then x and y are
linearly independent, so span{x, y} has signature (1, 1), hence x2y2 − 〈x, y〉2 =
1 − 〈x, y〉2 < 0. Since we have seen already that 〈x, y〉 < 0 for all x ∈ Hn, it
follows that 〈x, y〉 < −1.

Here an alternative proof just using algebra: Note that

(x2
0 − 1)(y20 − 1) = 1− x2

0 − y20 + x2
0y

2
0 ≤ 1− 2x0y0 + x2

0y
2
0 = (x0y0 − 1)2.

31



Taking square root and remembering that x0, y0 ≥ 1, we get

√

(x2
0 − 1)(y20 − 1) ≤ x0y0 − 1 (2)

and equality holds if and only if x0 = y0. The Cauchy-Schwarz inequality implies
(
∑n

i=1 xiyi
)

≤
((
∑n

i=1 x
2
i

)(
∑n

i=1 y
2
i

))1/2
= ((x2

0 − 1)(y20 − 1))1/2. Using (2), we

get, 〈x, y〉 = x1y1 + · · · + xnyn − x0y0 ≤ (x2 − 1)1/2(y2 − 1)1/2 − x0y0 ≤ −1.
Now suppose 〈x, y〉 = −1. Then all the inequalities above are equalities. If
(x1, · · · , xn) = (y1, · · · , yn) = (0, · · · , 0), then x0 = y0 = 1, so x = y. So
without loss we may assume that (x1, · · · , xn) 6= (0, · · · , 0). Equality holds in
Cauchy-Schwarz if and only if (y1, · · · , yn) = c(x1, · · · , xn) for some c ∈ R. Also
since equality holds in (2), we get x0 = y0. So

∑n
i=1 x

2
i = x2

0 − 1 = y20 − 1 =
∑n

i=1 y
2
i . It follows that c = ±1. So either y = x or y = (x0,−x1, · · · ,−xn). In

the later case, verify that 〈x, y〉 < −1.

10.4 Definition (distance formula, projection). We know that in the projective
model, the hyperbolic distance between α, β ∈ P−(Rn,1) is given by

d(α, β) = cosh−1

√

|〈a, b〉|2
a2b2

where a, b ∈ Rn,1 are vectors such that P(a) = α and P(b) = β. Using lemma
10.3, we find that the distance between x, y ∈ Hn is given by

d(x, y) = cosh−1(−〈x, y〉) = cosh−1(1 + 1
2 (x− y)2).

Let r ∈ Rn,1 such that r2 = 1 and x ∈ Hn. Let y = x − 〈x, r〉r. We know
that P(y) represents the projection of P(y) onto P(r⊥). Note that 〈x, y〉 =

x2−〈x, r〉2 = x2r2−〈x, r〉2 < 0, so y/
√

−y2 ∈ Hn. So y/
√

−y2 is the projection
of x onto the hyperplane r⊥ ∩Hn in the hyperboloid model.

10.5 Definition (reflections). Let H be a hyperplane in Rn,1. The linear
functional Rn,1 → Rn,1/H ≃ R with kernel H is representable in the form 〈s, ·〉
since the Lorentzian form on Rn,1 is non-degenerate. So H = s⊥ for some
s ∈ Rn,1. One of the three following possibilities hold:

◦ s2 < 0, s⊥ is positive definite and does not meet Hn.

◦ s2 = 0, s⊥ is singular positive semidefinite and is asymptotic to Hn.

◦ s2 > 0, s⊥ has signature (n − 1, 1) and s⊥ ∩ Hn is isomorphic to the
hyperbolic space Hn−1.

In the third case we say s⊥ ∩ Hn is a hyperplane in Hn. Sometimes we just
write s⊥ instead of s⊥ ∩H to denote a hyperplane in Hn.

Let s be a nonzero norm vector in Rn,1. Let

Rs(x) = x− 2〈s, x〉s/s2.
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be the orthogonal reflection in s. Since Rs is an isometry of Rn,1, it defines an
isometry of the metric space P−(Rn,1).

Note that {x ∈ Rn,1 : x2 = −1} = Hn ∪ (−Hn) where Hn and −Hn are the
two sheets of the hyperboloid. Since Rs is a continous isometry Rn,1 of order
2 (with Euclidean topology), we must have Rs(H

n) = ±Hn. If s2 < 0, then
without loss we can take s ∈ Hn and Rs(s) = −s ∈ −Hn. So in this case Rs

interchanges the two sheets of the hyperboloid.
Now assume s2 > 0. Then the reflection Rs fixes the hyperplane s⊥ ∩ Hn

pointwise byRs, so it must fix each hyperboloid. Thus Rs is an isometry of
(Hn, d). In fact one verifies that Rs is the unique isometry of order 2 of (Hn, d)
which fixes the hyperplane s⊥ ∩ Hn pointwise. If H denotes the hyperplane
orthogonal to s, then sometimes we write Rs = RH .

The hyperplane s⊥ or its image in the hyperbolic space is called the mirror
of the reflection Rs. The reflection Rs interchanges {x ∈ Hn : 〈x, s〉 > 0} and
{x ∈ Hn : 〈x, s〉 < 0}. These two sets are called the two sides of the mirror s⊥

or the two open half spaces in Hn bounded by the mirror s⊥.

10.6 Definition (Boundary of the hyperboloid model and cusps). Consider the
n-sphere C+

1 = {x = (x0, · · · , xn) ∈ Rn,1 : x2 = 0, x0 = 1} Let C+ = R>C
+
1 be

the cone on C+
1 . Then C = C+

∐

(−C+) is the set of non-zero null vectors in
Rn,1. If x ∈ C+

1 , y ∈ Hn, then

〈x, y〉 =
n
∑

i=1

xiyi − y0 ≤
(

n
∑

i=1

x2
i

)1/2( n
∑

i=1

y2i

)1/2

− y0 = (y20 − 1)1/2 − y0 < 0

If y is any vector in Hn, then C+ and −C+ are on opposite sides of y⊥. So
C+ and −C+ are the two connected components of C; these are called the
positive and negative light cones respectively. The positive light cone C+ is
the the component of C that is asymptotic to the hyperboloid Hn. One has
∂Hn = C/R× = C+/R>, so the boundary of Hn is in natural bijection with
the rays lying on the cone C+. When working in the hyperboloid model of Hn,
we shall always choose the representatives for ∂Hn from C+. If ρ ∈ C+, then a
horoball around ρ has the form

Br(ρ) = {y ∈ Hn : 〈ρ, y〉 ∈ [−r, 0)}.

Let v ∈ C+. Then v⊥ does not intersect C − R×v. Since (C+ − R>v) and
−(C+−R>v) are both connected, they are the connected components of C−R×v
and they are on either sides of v⊥. So (C+ −R>v) is on the same side of v⊥ as
Hn. Since 〈x, v〉 < 0 for all v ∈ Hn, we have 〈x, v〉 < 0 for all x ∈ (C+ − R>v).
It follows that 〈u, v〉 ≤ 0 for all u, v ∈ C+ and 〈u, v〉 = 0 if and only if v ∈ R>u.
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11 Hyperplanes, facets, chambers

We present the basic definitions and results about hyperplane arrangement in
the real hyperbolic space. Most of it follows directly in [B], Chapter 5, section
1 once we replace “affine space E” by “hyperbolic space Hn”, “straight lines”
by “geodesics” and so on. In many such cases we have refered to the result in
[B] and omitted the proof.

11.1. Let V be a real vector space. A codimension one subspace in V is called
a hyperplane in V . A coset of a hyperplane in V is called an affine hyperplane
in V . Let H be an affine hyperplane in V . Then (V \ H) has two connected
components, these are called open half spaces and their closures are called closed
half spaces and H is called the bounding hyperplane of these half spaces. If A
is a connected subset of V that does not meet H , then let DH(A) be the open
half space of V bounded by H that contains A. If N is a collection of affine
hyperplanes in V and A is a connected subset of V that is disjoint from each
hyperplane in N, then we write DN(A) = ∩H∈NDH(A).

11.2 Definition. The notation and assumptions introduced in this subsection
will remain in force for the rest of the section. Let V = Rn,1 and let Hn be the
n-dimensional real hyperbolic space:

Hn = {x = (x0, · · · , xn) ∈ V : x0 > 0 > x2} ≃ P(V<).

If a, b ∈ Hn, we let (a, b) (resp. [a, b]) denote the open (resp. closed) geodesic
segment in Hn joining a and b etc.

Let A be a half space (resp. a hyperplane or a subspace) of V . If A meets Hn

but does not contain it, then A∩Hn is called a half space (resp. a hyperplane or
a subspace) of Hn; by abuse of notation sometimes we simply write A instead
of A ∩ Hn. Let A be a half space (resp. a hyperplane or a subspace) in Hn.
Then A determines a half space (resp. a hyperplane or a subspace) in V which
will be denoted by AV , so A = AV ∩Hn.

More precisely, verify that a subspace A of Hn has the form A = AV ∩Hn ≃
P<(AV ) whre AV is the smallest linear subspace of V that contains A. The
subspace AV has signature (k, 1) for some k ≥ 0. One has A ≃ Hk, with the
induced metric (and hence topology) from Hn. We say A is a subspace of Hn

of dimension k.
Let H be hyperplane in Hn. Let ϕ be any functional on V whose kernel is

HV . Then the two half spaces of Hn bounded by H are {x ∈ Hn : ϕ(x) > 0}
and {x ∈ Hn : ϕ(x) < 0}. These are called the two sides of H .

Let H be a locally finite collection of hyperplanes in Hn. Let HV =
{HV : H ∈ H} be the corresponding set of hyperplanes in V . Notice that HV

need not be a locally finite collection since infinitely many hyperplanes may
meet at a point near the boundary of Hn. For A ⊆ Hn, we let

H(A) = {H ∈ H : A ⊆ H}.
Let a ∈ Hn. Then only finitely many hyperplanes of H meet Br(a) for any
fixed r. This shows that {d(a,H) : H ∈ H} is a discrete subset of R≥. Given
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any a, there exists a open convex neighborhood U of a such that U only meets
the hyperplanes of H that pass through a. Such a neighborhood U of a will be
called a small neighborhood (or an H-small neighborhood) of a. If Br(a) is a
small neighborhood of a, we call it a small ball around a.

Given x, y ∈ H, say x and y are equivalent with respect to H if, for each
H ∈ H, both x and y are either on H or strictly on the same side of H . This
defines an equivalece relation on Hn. An equivalence class is called a facet. Let
F be a facet. Let supp(F ) = ∩H∈H(F )H and suppV (F ) be the corresponding
subspace of V , so suppV (F )∩Hn = supp(F ). The set supp(F ) (resp. suppV (F ))
is a subspace of Hn (resp. V ) and is called the support of F in Hn (resp V ). If
F is a facet, then define dim(F ) = dim(supp(F )) = dim(suppV (F ))− 1.

A facet that is not contained in any hyperplane of H is called a chamber.
Let C be a chamber. A face of C is a facet contained in the closure of C whose
support is a hyperplane. A wall of C is a hyperplane in H that is the support
of a face of C. Let Wall(C) be the set of walls of C.

11.3 Lemma. Let H be a hyperplane in Hn. Then the two half spaces H+ and
H− bounded by H are the two connected components of Hn \H. The subspaces
and open and closed half spaces in Hn are convex. Let L be a geodesic ray in Hn

such that L * H and L * H±. Then L meets H at a unique point x, and each
neighborhood of x meets both H+ and H−. If a ∈ L−H, then [a, x) ⊆ DH(a).

Proof. Exercise.

11.4 Lemma (restricting to a subspace). Let L be a subspace of Hn. Let H be
a hyperplane in Hn with two sides H+ and H−. Suppose ∅ 6= L∩H 6= L. Then
L ∩ H is a hyperplane in the hyperbolic space L and its two sides are H+ ∩ L
and H− ∩ L.

Proof. Let L be a k-dimensional subspace of Hn. Then the subspace LV of V
has signature (k, 1). Since LV * HV , we have LV +HV = V , so dim(LV ∩HV ) =
dim(LV ) + dim(HV )− dim(V ) = dim(LV )− 1 = k. Since L∩H 6= ∅, the vector
space LV ∩ HV has a negative norm vector, so it has signature (k − 1, 1). So
LV ∩HV determines a (k−1) dimensional subspace L∩H in L. In other words,
L ∩H is a hyperplane in L.

Choose r ∈ V such that r2 = 1 and HV = r⊥. Then l 7→ 〈r, l〉 is a functional
on L whose kernel is L ∩ H . So the two sides of L ∩ H in L are the sets
{l ∈ L : 〈r, l〉 > 0} and {l ∈ L : 〈r, l〉 < 0}. These are precisely L ∩ H+ and
L ∩H−.

11.5 Lemma. (a) Let F be a facet and a ∈ F . If B is a hyperplane in H or a
half space bounded by a hyperplane in H, then a ∈ B if and only if F ⊆ B.

(b) Let F be a facet and a ∈ F . Then F = supp(F )∩
(

∩H∈H\H(F )DH(a)
)

and

F̄ = supp(F ) ∩
(

∩H∈H\H(F )DH(a)
)

. In particular, the facets and their closures
are convex subsets of Hn.

(c) Let C be a chamber and A ⊆ C. Then C = ∩H∈H\H(F )DH(A) and

C̄ = ∩H∈H\H(F )DH(A).
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Proof. Part (a) follows from definition of a facet. The expression for F in part
(b) follows from part (a). Since F ′ = supp(F ) ∩

(

∩H∈H\H(F )DH(a)
)

is closed,
we have F̄ ⊆ F ′. Conversely, suppose x ∈ F ′. Then [a, x) ⊆ supp(F ) and
[a, x) ⊆ DH(a) for all H ∈ H \ H(F ), so [a, x) ∈ F , hence x ∈ F̄ . This
proves part (b). Part (c) follows from from part (b) since supp(C) = ∅ and
DH(a) = DH(A) for any a ∈ A.

11.6 Lemma ([B] p 62-63, Prop. 3). Let F be a facet and L = supp(F ). Then
(i) The set F is a convex open subset of the hyperbolic space L.
(ii) The closure of F is the union of F and facets of dimension strictly

smaller than that of F .
(iii) In the topological space L, the set F is the interior of its closure.

11.7 Corollary ([B] p 63). Let F and F ′ be two facets. If F̄ = F̄ ′, then F = F ′.

11.8 Lemma ([B] p 63-64, Prop. 4). Let F be a facet. Let L be a subspace of
Hn which is an intersection of hyperplanes belonging to H. Let N be the set of
hyperplanes in H that do not contain L. TFAE:

(i) There exists a facet with support L that meets F̄ .
(ii) There exists a facet with support L that is contained in F̄ .
(iii) There exists x ∈ F̄ ∩ L such that x does not belong to any hyperplane

of N.
If these conditions are satisfied then L ∩ DN(F ) is the unique facet with

support L, that is contained in F̄ .

11.9 Lemma. The chambers are exactly the connected components of Hn\(∪H).

Proof. Let A be a connected component of U = Hn \ (∪H). Pick x ∈ A and let
C be the facet containing x. Then C does not meet ∪H, so C is a chamber. For
each H ∈ H, one has A ⊆ DH(a) = DH(C). So A ⊆ ∩H∈HDH(C) = C. On the
other hand, C is a connected subset of U and A is maximal connected subset
of U , so C = A, i.e. each connected component of U is a chamber. Conversely
each chamber C, being a connected subset of U , is contained in some connected
component A of U . But we just saw each such connected component A is a
chamber. So A = C.

11.10 Lemma ([B] p 64-65, prop. 5). Let C be a non-empty subset of Hn.
Assume that there exists a subset H′ of H with the following properties:

(a) For any H ∈ H′, there exists an open half space DH bounded by H such
that C = ∩H∈H′DH .

(b) The set C does not meet any hyperplane belonging to H \ H′.
Under these conditions, C is a chamber defined by H and DH = DH(C) for

all H ∈ H′.

11.11 Lemma ([B] p 65, prop. 6). Every point of Hn is in the closure of atleast
one chamber.
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11.12 Lemma ([B] p 65, prop. 7). Let L be a subspace of Hn and Ω be a
non-empty open subset of L.

(i) There exists a point a ∈ Ω that does not belong to any of the hyperplanes
of H that do not contain L.

(ii) If L is a hyperplane and L /∈ H, there exists a chamber that meets Ω.
(iii) If L is a hyperplane and L ∈ H, then there exists a point a in Ω that

does not belong to any hyperplane in H \ {L}.

Proof. The proof in [B] goes through. Lemma 11.4 implies that the restriction
of the hyperplane arrangement to L gives a hyperplane arrangement in L.

11.13 Lemma (recognizing a wall). Let C be a chamber and let L ∈ H. TFAE:
(i) The hyperplane L is a wall of C.
(ii) One has C 6= DH\{L}(C).
(iii) There exists x in the closure of C such that H(x) = {L}.
Suppose the equivalent conditions above hold. Then the wall L is the support

of a unique face of C, namely F = L∩DH\{L}(C). Any x ∈ F satisfies condition
(iii) above.

Proof. Assume (i). Let F be a facet in cl(C) with supp(F ) = L. LetH ∈ H\{L}.
Then F ⊆ cl(C) ⊆ cl(DH(C)), and F does not meet H , so F ⊆ DH(C). So
F ⊆ DH\{L}(C), but F * C. Thus (i) implies (ii).

Assume (ii). Write D = DH\{L}(C). One has C = D ∩ DL(C). So D
meets DL(C). If L does not meet D, then D will be on one side of C, which
would imply D ⊆ DL(C) and hence D = D ∩ DL(C) = C, contradicting our
assumption (ii). So L meets D. Choose x ∈ L∩D. Then x ∈ cl(DL(C)) ∩D ⊆
cl(C) and H(x) = {L}. Thus (ii) implies (iii).

Assume (iii). Let N = H \ {L}; these are the hyperplanes of H that do
not contain L. Note that x does not belong to any hyperplane of N. So the
implication ((iii) =⇒ (ii)) in 11.8 tells us there exists a facet F1 ∈ C̄ such that
supp(F1) = L, so L is a wall of C. Thus (iii) implies (i) and also any x ∈ L∩D
satisfies (iii).

Assume the equivalent conditions holds. Then the last statement of
11.8 implies that the wall L is the support of a unique face of C, namely
L ∩DH\{L}(C).

The next proposition shows that the walls of a chamber are enough to cut
out the chamber from the hyperbolic space and they form the samllest such
collection.

11.14 Lemma ([B] prop 9, p 66). Let C be a chamber of H and let M be
the set of walls of C. Then C = DM(C). If L is a subset of H such that
DL(C) = C, then L contains M. A subset F of cl(C) is a facet with respect to
the arrangement H if and only if it is a facet with respect to the arrangement
M. In particular, C is a chamber with respect to the arrangement M. So
cl(C) = ∩H∈M cl(DH(C)).

37



11.15 Lemma. Let H1 and H2 be two distinct walls of a chamber C. For
j = 1, 2, choose xj ∈ C̄ such that H(xj) = Hj. Then the open geodesic segment
joining x1 and x2 is contained in C.

Proof. Let H ′ ∈ H \ {H1, H2}. Lemma 11.13 implies xj ∈ DH′(C) for j = 1, 2,
so [x1, x2] ⊆ DH′(C). The geodesic ray x1 and x2 is not contained in H1 since
x2 /∈ H1, so this ray meets H1 only at x1. Lemma 11.13 implies x2 ∈ DH1

(C),
so (x1, x2] ⊆ DH1

(C). Similarly [x1, x2) ⊆ DH2
(C). Thus (x1, x2) ⊆ DH(C) for

all H ∈ H.

11.16 Lemma. Let C be a chamber and H1 and H2 be two walls of C. Suppose
H1 and H2 intersect in Hn. Let L be a hyperplane in Hn such that H1∩H2 ⊆ L
and L meets DH1

(C) ∩DH2
(C).f Then L meets C.

Proof. (see [B] p. 68, prop. 10). Choose unit normals rj to DHj
(C), so Hj = r⊥j

and C ⊆ Dr⊥
j
(rj) = DHj

(C). Choose r such that r2 = 1 and L = r⊥. Since

H1∩H2 ⊆ L, we get (span{r1, r2})⊥ ⊆ r⊥, so r = λ1r1+λ2r2 for some λ1, λ2 ∈
R. Pick y ∈ L ∩ DH1

(C) ∩ DH2
(C). Then 0 = 〈r, y〉 = λ1〈r1, y〉 + λ2〈r2, y〉.

Since both 〈r1, y〉 and 〈r2, y〉 are positive, it follows that λ1λ2 < 0.
For j = 1, 2, let xj be a generic point of C̄ ∩ Hj . Then x2 ∈ Dr⊥1

(r1), so

〈r1, x2〉 > 0. Similarly, 〈r2, x1〉 > 0. Now 〈r, x1〉 = λ2〈r2, x1〉 and 〈r, x2〉 =
λ1〈r1, x2〉. Since λ1λ2 < 0, we find that x1 and x2 are strictly on opposite sides
of L. So L meets (x1, x2). Lemma 11.15 implies that (x1, x2) ⊆ C.
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12 Opposite half spaces

12.1 Definition. Let V = Rn or V = Rn,1. Let r be a positive norm vector in
V . Define D(r) = Dr⊥(r). Note that D(r) = {x ∈ V : 〈x, r〉 > 0} is the open
half space of V bounded by the hyperplane r⊥ that contains r.

Let r1, r2 ∈ V be vectors of norm 1 such that span{r1, r2} is positive definite
of dimension 2. Let B1 and B2 be affine half spaces in V that are translates of
D(r1) and D(r2) respectively. Define the dihedral angle between the half spaces
B1 and B2 to be cos−1(−〈r1, r2〉) ∈ [0, π). Note that, if V = Rn, then this is
the angle that the cone D(r1) ∩D(r2) makes at r⊥1 ∩ r⊥2 .

12.2 Definition. Let B be an open half space in Hn (resp. an open half affine
half space in Rn). Then there exists a unique vector r in Rn,1 (resp. Rn) such
that r2 = 1 and B = D(r) (resp. B is a translate of D(r)). We say that r is the
unit normal vector to to the half space B (in more precise terms, r is the unit
normal to ∂B pointing towards B). Let B1 and B2 be two half spaces in Hn or
two affine half spaces in Rn. Let ri be the unit normal to Bi. We say that B1

and B2 are opposite half spaces if 〈r1, r2〉 ≤ 0.

12.3 Lemma. Let B1, B2 be two half spaces in Hn. Assume ∂B1 ∩ ∂B2 = ∅.
(a) The following are equivalent:
(i) ∂B1 ⊆ B2 and ∂B2 ⊆ B1.
(ii) Bop

2 ⊆ B1.
(iii) Bop

1 ∩Bop
2 = ∅.

(iv) Bop
1 ⊆ B2.

(v) B1 and B2 meet but do not contain each other.
(b) Of the four pairs (B1, B2), (B1, B

op
2 ), (Bop

1 , B2), (Bop
1 , Bop

2 ), there is
exactly one pair that do not intersect. This pair consists of the two half spaces
that do not meet ∂B1 ∪ ∂B2.

Proof. (a) Assume (i). Since ∂B1 ⊆ B2, the half space Bop
2 does not meet ∂B1,

so is contained in one side of it, that is, either Bop
2 ⊆ B1 or Bop

2 ⊆ Bop
1 . But the

second possibility would imply ∂B2 ⊆ cl(Bop
1 ) which contradicts ∂B2 ⊆ B1. So

(i) implies (ii).
Assume (ii). Then Bop

1 ∩Bop
2 ⊆ Bop

1 ∩B1 = ∅. Thus (ii) implies (iii).
Assume (iii). Then Bop

1 ⊆ cl(B2), so ∂B1 ⊆ cl(B2) = B2 ∪ ∂B2. But ∂B1

is disjoint from ∂B2, so ∂B1 ⊆ B2. Similarly ∂B2 ⊆ B1. Thus (iii) implies (i).
Interchanging the role of B1 and B2, we find (i), (ii), (iii), (iv) are equivalent.

Assume (i) through (iv). If B1 ⊆ B2, then (iv) would imply B1 ∪Bop
1 ⊆ B2,

so Hn ⊆ cl(B2) which is absurd. So B2 + B1; similarly B1 + B2. Choose
x ∈ ∂B1 ⊆ B2. There is a neighborbood of x that is contained in B2, and any
such neighborhood would intersect B1, so B1 ∩B2 6= ∅. Thus (i) implies (v).

Finally assume (v). If B2 did not meet ∂B1, then B2 would be contained in
one side of ∂B1. However (v) implies B2 * B1 and B2 * Bop

1 . So ∂B1 must meet
B2. But since ∂B1 does not meet ∂B2, the hyperplane ∂B1 is contained in one
side of ∂B2. Hence ∂B1 ⊆ B2. For similar reason ∂B2 ⊆ B1. This proves part
(a). For part (b), pick the side Ci of ∂Bi that contains the other hyperplane.
Then (a) implies that (Cop

1 , Cop
2 ) is the only pair that do not intersect.
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12.4 Lemma (pair of non-intersecting hyperplanes). Let r, s ∈ Rn,1, r2 = s2 =
1. Let Hr = r⊥ ∩Hn and Hs = s⊥ ∩Hn.

(a) One has Hr ∩Hs = ∅ if and only if span{r, s} has signature (1, 1), if and
only if 〈r, s〉2 > 1.

(b) Assume Hr ∩Hs = ∅. Then one of the four following mutually exclusive
possiblities hold:

(i) 〈r, s〉 > 1, Hr ⊆ D(s), Hs ⊆ D(−r) and D(−s) ∩D(r) = ∅.
(ii) 〈r, s〉 > 1, Hr ⊆ D(−s), Hs ⊆ D(r) and D(s) ∩D(−r) = ∅.
(iii) 〈r, s〉 < −1, Hr ⊆ D(s), Hs ⊆ D(r) and D(−s) ∩D(−r) = ∅.
(iv) 〈r, s〉 < −1, Hr ⊆ D(−s), Hs ⊆ D(−r) and D(s) ∩D(r) = ∅.

Proof. (b) Clearly four possibilities listed are mutually exclusive. Let t = 〈r, s〉,
c = 1/

√
t2 − 1, s′ = r − ts and r′ = s− tr. Then

〈s′, s〉 = 〈r′, r〉 = 0 and s′2 = 〈s′, r〉 = −1/c2 = 〈r′, s〉 = r′2.

So (cs′)2 = (cr′)2 = −1 and cr′ ∈ D(−s), cs′ ∈ D(−r). We compute

〈cr′, cs′〉 = c2〈r − ts, s− tr〉 = c2(t− t− t+ t3) = c2t(t2 − 1) = t.

Since r⊥ and s⊥ do not meet in Hn, either 〈r, s〉 > 1 or 〈r, s〉 < −1.
First consider the case 〈r, s〉 > 1. Then 〈cr′, cs′〉 > 0. So either cr′,−cs′ ∈

Hn or −cr′, cs′ ∈ Hn. If −cr′, cs′ ∈ Hn, then cs′ ∈ D(−r) ∩ Hs, so Hs ⊆
D(−r) and −cr′ ∈ Hr ∩ D(s), so Hr ⊆ D(s). Now lemma 12.3 implies that
D(−s) ∩D(r) = ∅, so (i) holds. Similarly, if −cr′, cs′ ∈ Hn, then (ii) holds.

Now consider the case 〈r, s〉 < −1. Then 〈cr′, cs′〉 < 0. So either −cr′,−cs′ ∈
Hn or cr′, cs′ ∈ Hn. We find that (iii) and (iv) holds respectively in these two
cases.

12.5 Lemma. Let B1 and B2 be two half spaces in Hn or two affine half spaces
in Rn. Show that the following are equivalent:

(a) B1 and B2 are opposite half spaces.
(b) One of the following three conditions hold (i) ∂B1 and ∂B2 intersect in

Hn (resp. in Rn) and the dihedral angle between B1 and B2 is in [0, π/2], (ii)
∂B1 ⊆ B2 and ∂B2 ⊆ B1, (iii) B1 ∩B2 = ∅.

Proof. Let r1 and r2 be unit normals to B1 and B2. If ∂B1 and ∂B2 intersect,
then the definition of dihedral angle shows that 〈r1, r2〉 ≤ 0 if and only if
condition (i) of (b) holds. Suppose ∂B1 ∩ ∂B2 = ∅. Then conditions (ii) and
(iii) in (b) hold if and only if we are in the cases (iii) and (iv) respectively in
lemma 12.4. Thus the equivalence of (a) and (b) in this case follows from lemma
12.4.

12.6 Lemma. Let B1 and B2 be two half spaces in Hn. Assume that ∂B1 and
∂B2 do not meet and B1 and B2 are not opposite. Then one of the half spaces
contain the closure of the other.
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Proof. Since B1 and B2 are not opposite, without loss, we may assume ∂B1 *
B2. Since ∂B1 ∩ ∂B2 = ∅, the hyperplane ∂B1 is contained in one side of ∂B2.
So we must have ∂B1 ⊆ Bop

2 . This implies B2 does not meet ∂B1, so either
B2 ⊆ B1 or B2 ⊆ Bop

1 . The second case is impossible since it would mean B1 and
B2 do not meet, hence are opposite. So B2 ⊆ B1. Hence ∂B2 ⊆ B̄1 = B1∪∂B1.
Since ∂B2 and ∂B1 do not meet, it follows that ∂B2 ⊆ B1. So B̄2 ⊆ B1.
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13 Real hyperbolic reflection groups

13.1. Setup: For this section, fix H to be a collection of hyperplanes in Hn. Let
W be the group generated by reflections in the hyperplanes in H. We assume
that

W acts properly discontinuously on Hn and H is stable under W .

We say that W is a (hyperbolic) reflection group. The hyperplanes in H are
called mirrors (of W ).

Let z ∈ ∂Hn. Say that z is a cusp of H if there exists a horoball around z
that only meets the hyperplanes that pass through z. Let clH(Hn) be the union
of Hn and the cusps of H. We define a topology on clH(Hn) by the following
prescription:

◦ clH(Hn) contains Hn as an open dense set.

◦ If z ∈ clH(Hn) \ Hn, a basis for open sets around z is given by sets of the
form B ∪ {z} where B is an open horoball around z.

The hyperplanes, half spaces, chambers etc will from now on be considered as
subsets of clH(Hn). The action of the reflection group W on Hn extends to an
action on clH(Hn).

13.2 Lemma ([B], p 77, lemma 1). The hyperplanes H form a locally finite
collection.

13.3 Lemma. Let H be a hyperplane Hn. Let a ∈ Hn \ H, y ∈ Hn. Then
y ∈ DH(a) if and only if d(a,RH(y)) > d(a, y). One has y ∈ H if and only if
d(a,RH(y)) = d(a, y).

Proof. Choose s such that H = s⊥ and s2 = 1. One has

cosh(d(a,Rs(y))− cosh(d(a, y)) = −〈a,Rs(y)〉+ 〈a, y〉 = 2〈a, s〉〈y, s〉.

So d(a,Rs(y)) > d(a, y) if and only if 〈a, s〉〈y, s〉 > 0, that is, a and y are
strictly on the same side of s⊥. One has d(a,Rs(y)) = d(a, y) if and only if
〈a, s〉〈y, s〉 = 0, if and only if 〈y, s〉 = 0 (since 〈a, s〉 6= 0).

13.4 Lemma ([B], p 77, lemma 2). Let C be a chamber with respect to H. Let
S be the set of reflections with respect to the walls of C.

(a) Let y ∈ Hn. Then there exists w ∈ 〈S〉 such that wy ∈ cl(C).
(b) The group W acts transitively on the set of chambers.
(c) One has 〈S〉 = W , in other words, the reflections in the walls of a

chamber generate the reflection group.

Proof. Let P = 〈S〉 be the subgroup of W generated by S.
(a) Fix a ∈ C. We shall show that the orbit Py meets cl(C). Choose z ∈ Py

such that d(z, a) ≤ d(x, a) for all x ∈ Py. Such a point z exists since only
finitely many points of Py meets a fixed ball around a. Let H be a wall of C.
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Then RH ∈ P , so by our choice of z, we have d(z, a) ≤ d(RH(z), a). Lemma
13.3 implies that z ∈ cl(DH(a)) = cl(DH(C)). So by lemma 11.14, z ∈ cl(C).

(b) Choose a chamber C′ and y ∈ C′. By (a), there is w ∈ P such that
wy ∈ cl(C). But wy does not belong to any hyperplane of H, since y does not.
So wy ∈ C. So wC′ ∩ C 6= ∅. So wC′ = C. So P acts transitively on the
chambers.

(c) Let H be a mirror of W . It suffices to show RH ∈ P . Choose a chamber
C′ such that H is a wall of C′. By (b), there exists w ∈ P such that wC′ = C,
so wH is a wall of C. So wRHw−1 = RwH ∈ P . It follows that RH ∈ P .

For background on Coxeter systems see [B] Ch. IV, §1.

13.5 Theorem ([B] p 78, theorem 1). Let C be a chamber with respect to H.
Let S be the set of reflections with respect to the walls of C.

(a) (W,S) is a Coxeter system.
(b) Let H ∈ H. If w ∈ W such that l(RHw) > l(w), then C and wC are on

the same side of H.
(c) The group W acts simply transitively on the set of chambers.

Proof. See [B].

13.6 Remark. The reflection groups of Lorentzian lattices are examples of hyper-
bolic reflection groups. Keep in mind that in the setup of 13.4, the chamber C
may have infinitely many walls so (W,S) may be Coxeter system with infinitely
many generators. Indeed, there is a very interesting hyperbolic reflection group
acting on H25 where S is in bijection with the vectors of the Leech lattice.

Next we study the stabilizers of points in Hn and the stabilizers of cusps.

13.7 Lemma. Let F be a facet or a cusp of H. Let C1 and C2 be two chambers
such whose closures contain F . Let H be a hyperplane that seperates C1 and
C2. Then H contains F .

Proof. If F is a facet, pick v ∈ F . If F is a cusp, let v = F . Suppose H is a
hyperplane that does not contain F . Then there is an open ball (or horoball) B
around v that does not meet H . For j = 1, 2, since v ∈ cl(Cj), the neighborhood
B meets Cj . Pick xj ∈ Cj ∩ B. Since B is convex, there is a path inside B
joining x1 and x2 and this path does not meet H since H ∩B = ∅. So H does
not seperate C1 and C2.

13.8 Theorem. Let F be a facet or a cusp of H. Let CF be the set of chambers
whose closures contain F . The pointwise stabilizer of F in W is generated by the
reflections in the mirrors containing F and this stabilizer acts simply transitively
on CF .

Proof. Let P be the group generated by the reflections in the mirrors containing
F . Fix a chamber C1 ∈ CF and pick a ∈ C1. Let C′ ∈ CF . Choose y ∈ C′.
First we are going to show that the orbit Py meets C1. As in proof of 13.4,
choose z ∈ Py such that d(z, a) ≤ d(x, a) for all x ∈ Py. Note that if R is a
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reflection in a mirror containing F , then R permutes the chambers in CF . Since
y ∈ C′ ∈ CF and z ∈ Py, it follows that z ∈ C2 for some C2 ∈ CF . If C1 6= C2,
let H be any mirror that seperates C1 and C2. Lemma 13.7 implies that H
contains F . So RH ∈ P . So by our choice of z, we have d(z, a) ≤ d(RH(z), a).
Lemma 13.3 implies that z ∈ cl(DH(a)). This contradiction proves C1 = C2.
So P acts transitively on CF .

Let w ∈ W such that w fixes F pointwise. Then wC1 ∈ CF . By part (a),
there exists p ∈ P such that wC1 = pC1. Since W is simply transitive on the
chambers, we get w = p ∈ P .

13.9 Lemma. Let C be a chamber with respect to H and H1, H2 be two distinct
walls of C. Then DH1

(C) and DH2
(C) are opposite half spaces.

Proof. Suppose H1 ∩H2 = ∅. Note that C ⊆ DH1
(C), so cl(C) ⊆ cl(DH1

(C)).
Since H2 meets cl(C), this hyperplane must meet cl(DH1

(C)) = DH1
(C) ∪H1.

But H2 ∩ H1 = ∅, we find H2 meets DH1
(C). Since H2 does not meet H1, it

must be contained in one side ofH1, soH2 ⊆ DH1
(C). SimillarlyH1 ⊆ DH2

(C).
So DH1

(C) and DH2
(C) are opposite (condition (ii) of being opposite).

Now suppose H1 and H2 meet. Choose unit normals r1 and r2 to DHj
(C).

So r2j = 1 and DHj
(C) = D(rj) for j = 1, 2. Suppose D(r1) and D(r2) are

not opposite. Then 〈r1, r2〉 > 0. Choose xj ∈ cl(C) such that H(xj) = {Hj}.
Let r = Rr1(r2) = r2 − 2〈r1, r2〉r1. Then 〈r, x1〉 = 〈r2, x1〉 and 〈r, x2〉 =
−2〈r1, r2〉〈r1, x2〉 have strictly opposite signs. So x1 and x2 are strictly on
opposite sides of r⊥ = RH1

(H2). So RH1
(H2) meets (x1, x2) which is contained

in C by lemma 11.15. So RH1
(H2) meets C. But this is a contradiction since

RH1
(H2) ∈ H.
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14 Vinberg’s algorithm

For this section, maintain the setup of 13.1. Vinberg’s algorithm gives a method
for finding a chamber for the hyperbolic reflection group W .

14.1. Vinberg’s algorithm: Fix x0 ∈ clH(Hn), called controlling vector.
Choose a chamber C0 for the arrangement H(x0). Pick an enumeration
L1, L2, · · · of the mirrors in H \ H(x0) such that dx0

(L1) ≤ dx0
(L2) ≤ · · ·

(here dx0
denotes the hyperbolic or horocyclic distance from x0). For a mirror

L, define D+
L = DL(x0) if x0 /∈ L and D+

L = DL(C0) if x0 ∈ L. Inductively,
define ∆0 ⊆ ∆1 ⊆ · · · ⊆ H as follows:

◦ Let ∆0 be the set of walls of C0.

◦ Suppose we have defined ∆0, · · · ,∆n−1. If DLn
(x0) and D+

H are opposite
for each H ∈ ∆n−1 such that dx0

(H) < dx0
(Ln), then say that we accept

Ln and let ∆n = ∆n−1 ∪ {Ln}. Otherwise, we reject Ln and let ∆n =
∆n−1.

Let ∆ = ∪n∆n. One has C0 = ∩H∈∆0
DH(C0) and C = C0∩(∩H∈∆\∆0

DH(x0))
is the unique chamber of H such that C ⊆ C0 and x0 ∈ cl(C). The collection
∆ = Wall(C).

We need a couple of lemmas before we show that the above algorithm works.

14.2 Lemma. Fix x0 ∈ clH(Hn) and a chamber C0 of the arrangement H(x0).
(a) Then there is a unique chamber C of H such that x0 ∈ cl(C) and C ⊆ C0.
(b) A hyperplane H ∈ H(x0) is a wall of C if and only if it is a wall of C0.

Proof. (a) Let B be a H-small neighborhood of x0. Then B ∩ C0 is non-empty
and does not meet any mirror of H, so must be contained in some chamber C
of H. Then C ⊆ C0 and x0 ∈ cl(C).

Suppose C1 and C2 are chambers of H such that Cj ⊆ C0 and x0 ∈ cl(Cj).
By 13.8, there exists g ∈ Wx0

such that gC1 = C2. Since C1 and C2 are
contained in C0, it follows that gC0 = C0. But Wx0

is the reflection group
of the arrangement H(x0), so it is simply transitive on the chambers of H(x0);
hence gC0 = C0 implies g = id. So C1 = C2.

(b) Let H ∈ H(x0). Suppose H is a wall of C. By implication (i) =⇒ (iii)
of 11.13, there exists x ∈ cl(C) such that H(x) = {H}. Since C ∈ C0, we have
x ∈ cl(C0). Now, the reverse implication (iii) =⇒ (i) of lemma 11.13 tells us
H is a wall of C0. Convesely, suppose H is a wall of C0. Pick x ∈ cl(C0) such
that the only element of H(x0) passing through x is H . Let B be a H-small ball
around x0. Let y ∈ (x0, x] ∩B. Since cl(C0) is convex, we have y ∈ cl(C0). Let
L ∈ H(y). Since y ∈ B, we have L ∈ H(x0). Since L contains both x0 and y, it
contains the whole geodesic ray joining x0 and y, so x ∈ L and hence L = H .
So H(y) = {H}. Let U be any open set containing y. Since y ∈ cl(C0), the
intersection U ∩ B ∩ C0 is non-empty. In the proof of part (a), we saw that
B ∩ C0 ⊆ C. So U ∩ C is non-empty. So y ∈ cl(C). So H is a wall of C.
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14.3 Lemma. Let B1, B2 be opposite half spaces in Hn. Let x0 ∈ clH(Hn) such
that x0 ∈ B1∩ cl(B2). Let x be the projection of x0 onto ∂B1. Then x ∈ cl(B2).
Further x ∈ ∂B2 if and only if x0 ∈ ∂B2 and the unit normals to B1 and B2

are orthogonal.

Proof. Suppose x /∈ cl(B2). Let i = 1 or 2. Let ri be the unit normal to Bi. So
r2i = 1, Bi = D(ri), 〈r1, r2〉 ≤ 0. Since x0 ∈ B1 ∩ cl(B2), we have 〈x0, r1〉 > 0

and 〈x0, r2〉 ≥ 0. Let y = x0 − 〈x0, r1〉r1. Recall that x = y/
√

−y2 and the
geodesic segment [x0, x] is parametrized by P((1−t)x0+ty) with t ∈ [0, 1]. Since
∂B2 = r⊥2 seperates x and x0, it must meet [x0, x]. So there exists t ∈ [0, 1)
such that 〈r2, (1− t)x0 + ty〉 = 0. This is equivalent to

〈r2, x0〉 = t〈r1, x0〉〈r2, r1〉.

If t 6= 0, then we must have 〈r2, x0〉 = 0 = 〈r2, r1〉, which forces 〈r2, y〉 = 0 and
x ∈ ∂B2 which is a contradiction. So we must have t = 0 and 〈r2, x0〉 = 0. But
in this case, since y /∈ cl(B2), we get

0 > 〈r2, y〉 = 〈r2, x0〉 − 〈r1, x0〉〈r2, r1〉 = −〈r1, x0〉〈r2, r1〉,

which again forces 〈r1, r2〉 > 0, again a contradiction. Thus x ∈ cl(B2). Now
x ∈ ∂B2 if and only if 〈y, r2〉 = 0 which translates into 〈r2, x0〉 = 〈r1, x0〉〈r2, r1〉.
Looking at signs of the three terms, we find this equality can hold if and only if
〈r2, x0〉 = 0 = 〈r2, r1〉.

14.4 Lemma. Let L and H be hyperplanes in Hn. Let ξ ∈ P(V≤) such that
ξ /∈ L ∪H. If prL(ξ) = prH(ξ), then L = H.

Proof. Choose x ∈ V≤ such that P(x) = ξ. Choose r, s such that r2 = s2 = 1 and
L = r⊥∩Hn, H = s⊥∩Hn. Now prL(ξ) and prH(ξ) are scalar multiples of pr =
x−〈r, x〉r and ps = x−〈s, x〉s respectively. So pr = λps for some non-zero scalar
λ. Taking inner product of both sides with r and s yields 〈r, x〉 = 〈s, x〉〈r, s〉
and 〈s, x〉 = 〈r, x〉〈s, r〉. From these two equations, it follows that 〈r, s〉2 = 1,
since 〈r, x〉 and 〈s, x〉 are non-zero. Now the equation 〈r, x〉 = 〈s, x〉〈r, s〉 implies
〈r, x〉2 = 〈s, x〉2. It follows that p2r = x2 − 〈r, x〉2 = x2 − 〈s, x〉2 = p2s, so λ2 = 1.
If λ = −1, then pr = −ps and p2r = 〈pr, x〉 = −〈ps, x〉 = −p2s, which contradicts
p2r = p2s < 0. Hence λ = 1 and r = s.

14.5 Theorem. Vinberg’s algorithm 14.1 produces a chamber C for H.

Proof. By lemma 14.2(a), there is a unique chamber C of H such that x0 ∈ cl(C).
By induction n we shall prove the following proposition Pn for all n ≥ 0:

Pn: One has ∆n = Wall(C) ∩ (H(x0) ∪ {L1, · · · , Ln}).
Lemma 14.2(b) proves P0. By induction, assume Pn−1. Write L = Ln. If L

is rejected by the algorithm, then there exists H ∈ ∆n−1 such that DL(C) and
DH(C) are not opposite and 13.9 implies that L /∈ Wall(C), which proves Pn.

Now suppose L is accepted by the algorithm. If possible, suppose L is not a
wall of C. Let x be the projection of x0 onto L.
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Claim: If H ∈ Wall(C) and x /∈ DH(C), then H contains the geodesic ray
T ′ through x0 and x

proof of claim: Let H ∈ Wall(C) such that x /∈ DH(C). Then H meets
[x0, x]. So dx0

(H) ≤ dx0
(L). If dx0

(L) = dx0
(H), then x is also the projection

of x0 on H , hence 14.4 implies H = L. dx0
(H) < dx0

(L). So H ∈ H(x0) ∪
{L1, · · · , Ln−1}. By induction hypothesis H ∈ ∆n−1. Since L got accepted
by the algorithm, the half spaces DH(C) and DL(C) must be opposite. Since
x0 ∈ cl(DH(C)) ∩ DL(C), lemma 14.3 implies that x ∈ cl(DH(C)). Since
x /∈ DH(C), infact x ∈ H . So 14.3 further implies x0 ∈ H . This proves the
claim.

Let B be a H-small ball around x and consider the line segment T = T ′∩B.
Let H be any wall of C. By the claim, either x ∈ DH(C) in which case T ⊆
DH(C), or else H contains T ′ in which case T ⊆ H . So T ⊆ cl(C). But this
is absurd since one verifies that T meets both open half spaces boudned by
L ∈ H. This contradiciton proves that if Ln is accepted by the algorithm, then
Ln ∈ Wall(C). Hence Pn holds.

14.6 Corollary. Fix x ∈ clH(Hn) and a chamber C for H such that x ∈ cl(C).
Let Wx be the stabilizer of x in W and let Cx be the chamber of Wx containing
C. Then H(x) ∩Wall(C) is the set of walls of Cx.

Proof. By 13.8, we know that Wx is generated by the reflections in the hyper-
planes H(x), so a chamber for Wx (resp W ) is a chamber for the arrangement
H(x) (resp. H). Let Cx be the chamber for Wx containing C. By lemma 14.2(a),
there is a unique chamber C′ of H such that C′ ⊆ Cx and x ∈ cl(C′). But C
is such a chamber, so C′ = C. Now part (b) of lemma 14.2(b) implies that the
walls of Cx are just the walls of C that pass through x.
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15 Group action on hyperbolic space

We collect a few basic facts about action of automorphism groups on hyperbolic
space.

15.1 Lemma. Let G be a group and H be a subgroup of finite index. Then
there exists N ⊆ H ⊆ G such that N is a normal subgroup of G of finite index.

Proof. Let N be the kernel of the homomorphism G → Aut(G/H) obtained
from the left action of G on G/H = {gH : g ∈ G}. Since H is finite index in G,
it follows that Aut(G/H) is a finite group, so N is a normal subgroup of finite
index in G. Verify that N ⊆ H .

For the rest of the section, let V be a real or complex vector space with the
signature (n, 1) (bilinear or hermitian) form 〈 | 〉. Let X = P−(V ) be the real
or complex hyperbolic space.

15.2 Lemma. If G be a subgroup of Aut(V ) that fixes a point in X, then G is
finite.

Proof. Let x ∈ X such that gx = x for all g ∈ G. Choose v ∈ V− such that
P (v) = x. Then G fixes the line containing v, so G fixes v⊥. Hence G ⊆ Aut(v⊥)
which is finite since v⊥ is negative definite.

The following is a fundamental result on linear group action. We shall not
prove it.

15.3 Theorem (Selberg’s lemma, 1960). A finitely generated linear group over
a field of characteristic zero is virtually torsion free, that is, it contains a torsion
free subgroup of finite index.

The following corollary will be useful for us.

15.4 Corollary. (a) Let G be a finitely generated subgroup of Aut(V ). Then
G contains a normal subgroup of finite index that acts freely on the hyperbolic
space X = P−(V ).

(b) Assume further that G is a discrete subgroup of Aut(V ). Then X/G is
an orbifold (i.e. it locally looks like Euclidean space modulo finite groups).

Proof. (a) By Selberg’s lemma G contains a torsion free subgroup H of finite
index and H contains a finite index subgroup N that is normal in G. Since N
is torsion free, lemma 15.2 implies that it acts freely on X .

(b) Let K = G/N . Since N is discrete and acts freely on X , it follows that
N acts properly discontinuously on X , it follows that Y = X/N is a manifold,
so locally it looks like Euclidean space. One has X/G = Y/K, so it is a manifold
modulo a finite group, hence an orbifold.
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16 Lattices

16.1 Definition. A lattice L is a Z-module of finite rank with a symmetric
bilinear form 〈 , 〉 : L× L → Q. If the bilinear form takes values in Z, then we
say that L is integral. Define the radical of L, denoted rad(L), by

rad(L) = {x ∈ L : 〈x, y〉 = 0 for all y ∈ L}.

If the bilinear form is non-degenerate, i.e. rad(L) 6= 0, then we say L is singular;
otherwise, we say that L is non-singular. Unless otherwise stated, we shall
assume that our lattices are non-singular. Let L be an integral lattice. Say that
L is even if the norm of every lattice vector is an even integer, otherwise, say
that L is odd. Let V = L ⊗ R be the underlying vector space of L. Define the
dual lattice of L, denoted L∨, to be the set of all v ∈ V such that 〈v, L〉 ⊆ Z.
Say that L is self-dual if L = L∨.

Let v1, · · · , vk be a Z-basis for a non-singular lattice L. Then M = ((〈vi, vj〉))
is called a gram matrix of L. Suppose M has m positive eigenvalues and n
negative eigenvalues, then we say L has signature (m,n). A lattice of signature
(m, 1) is called a Lorentzian lattice. The scalar d(L) = det(M) is called the
discriminant of L. ( One verifies that the pair (m,n) and the scalar det(M)
does not depend on the choice of the gram matrix M). We state the basic
properties of the discriminant; the proofs are left out as exercises. If L is a
integral lattice then L ⊆ L∨ and one has

d(L) = [L∨ : L] = d(L∨)−1.

If L ⊆ M are integral lattices, then

L ⊆ M ⊆ M∨ ⊆ L∨ and [L : M ] = [M∨ : L∨].

If L ⊆ Rn, then d(L) = vol(Rn/L)2.

We define a few important lattices. Recall that Rm,n denotes the (m + n)
dimensional real vector space with the quadratic form

x2 = −x2
1 − · · · − x2

n + x2
n+1 + · · ·+ x2

m+n.

So Rm = Rm,0. We often define a lattice L by specifying L as a subset of Rm,n

with the bilinear form induced from Rm,n.

16.2 Example. Let m,n be non-negative integers. Define Im,n ⊆ Rm,n to be
the set of all vectors x = (x1, · · · , xm+n) where each xj ∈ Z. So Im,0 is just the
usual integer lattice Zm. If m− n ≡ 0 mod 8, define IIm,n ⊆ Rm,n by

IIm,n = {x ∈ Rm,n : 2xj ∈ Z, (xi − xj) ∈ Z for all i, j,
∑

xj ≡ 0 mod 2}.

The lattice H = II1,1 is called a hyperbolic cell. For n ≥ 1, let

L(an) = {(x0, · · · , xn) ∈ Zn+1 :
∑

xi = 0}.
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For n ≥ 3, let

L(dn) = {(x1, · · · , xn) : Z
n :

∑

xi ≡ 0 mod 2}.

Let L(e8) = II8,0. Let L(e7) be the orthogonal complement of any norm 2 vector
in L(e8) and let L(e6) be the orthogonal complement of any L(a2) sitting inside
L(e8). One verifies that all the above lattices are integral and all the ones other
than Im,n are even.

16.3 Lemma. Let m,n be non-negative integers such that (m− n) ≡ 0 mod 8.
Then IIm,n is a even self dual integral lattice of signature (m,n).

Proof. The lattice IIm,n has signature (m,n) since the lattice spans the vector
space Rm,n, One directly verifies that IIm,n is even and integral if (m − n) ≡
0 mod 8. Let Im,n be the sublattice of Rm,n consisting of all vectors that have
integer coordinates. One easily checks that Im,n is self-dual. Let I+m,n be the
set of all vectors x ∈ Im,n such that

∑

j xj ≡ 0 mod 2. Then I+m,n is of index 2

in Im,n, so [(I+m,n)
∨ : Im,n] = 4. One verifies that IIm,n is spanned by I+m,n and

the vector v = (12 ,
1
2 , · · · , 12 ) and v has order 2 in the quotient IIm,n/I

+
m,n. So

[IIm,n : I+m,n] = [(I+m,n)
∨ : II∨m,n] = 2.

On the other hand

4 = [(I+m,n)
∨ : Im,n] = [(I+m,n)

∨ : II∨m,n][II
∨
m,n : IIm,n][IIm,n : I+m,n].

It follows that [II∨m,n : IIm,n] = 1.

For each m,n ∈ Z> such that (m − n) ≡ 0 mod 8, then there is a unique
even self-dual integral lattice of signature (m,n) (see [S]); the lattice IIm,n is a
concrete model for this lattice.

16.4 Lemma. Let L be an even unimodular lattice. Let z be a primitive null
vector of L. Then there exists z1 ∈ L such that H = spanZ{z, z1} ≃ II1,1. Then
N = H⊥ is even unimodular, z⊥ ≃ N ⊕ Zz and z⊥/z ≃ N .

Proof. Since L is self dual, there exists z2 ∈ L such that 〈z, z2〉 = 1. Let
z1 = z2 − (z22/2)z. Then z21 = 0 and 〈z, z1〉 = 1. So H = spanZ{z, z1} ≃ II1,1.
If x ∈ L, then verify that x− 〈x, z1〉z − 〈x, z〉z1 ∈ H⊥ = N , so L = H⊥N . Let
f ∈ N∨. Then f extends to a functional on N⊥H = L by letting f(H) = 0.
Since L is self dual, there exists v ∈ L such that f(·) = 〈v, ·〉. If h ∈ H , then
〈v, h〉 = f(h) = 0, so v ∈ H⊥ = N . Thus N is self-dual, hence a Niemeier
lattice. Let x ∈ z⊥. Then we can write x = n + cz + c1z1 with c, c1 ∈ Z and
n ∈ N . One has c1 = 〈x, z〉 = 0, so x ∈ N ⊕ Zz. So z⊥ = N ⊕ zZ. It follows
that N ≃ z⊥/z.

16.5 Lemma. Let L = II8n+1,1. Then the following sets are in natural bijec-
tion:
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1. the orbits of cusps of L under Aut(L).

2. the isomorphism classes of positive definite even unimodular lattices of
dimension 8n.

Proof. Let ρ1 and ρ2 be cusps of L. By lemma 16.4, there exists hyperbolic cells
Hj containing ρj such that L = Hj ⊕H⊥

j and H⊥
j ≃ ρ⊥j /ρj are positive even

unimodular lattice of dimension 8n. If gρ1 = ρ2 for some g ∈ Aut(L), then g
induces an isomorphism from ρ⊥1 /ρ1 to ρ⊥2 /ρ2. Conversely, if ρ⊥1 /ρ1 ≃ ρ⊥2 /ρ2,
then pick any isomorphism from H⊥

1 to H⊥
2 and take an isomorphism from H1

to H2 that sends ρ1 to ρ2. Using the splitting L = Hj ⊕H⊥
j , we get an element

g ∈ Aut(L) that takes ρ1 to ρ2.
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17 Simply laced finite root systems

We give a quick run through the basics of simply laced finite root systems.

17.1 Definition. Let (U, 〈 , 〉) be a positive definite real inner product space of
dimension n. A finite subset Φ of U is called a simply laced root system of rank
n in U if U = spanZ(Φ) and for all u, v ∈ Φ, we have, 〈u, v〉 ∈ Z, v2 = 2 and
Rv(Φ) = Φ. (Recall: Rv denotes reflection in v). Let W be the group generated
by {Rv : v ∈ Φ}. The reflection group W is called the Weyl group of Φ.

If Φ1 and Φ2 are root systems in U1 and U2 respectively, then Φ = Φ1 ∪ Φ2

is a root system in U1⊥U2. We say that Φ is the direct sum of Φ1 and Φ2 and
we write Φ = Φ1⊥Φ2. A root system is called irreducible if it is not a direct
sum of two non-empty root systems.

In this section, Φ would always denote a simply laced root system. Since
Rs(s) = −s ∈ Φ for all s ∈ Φ, we have Φ = −Φ.

Let L be an positive definite integral lattice. Then the norm 2 vectors in L
form a simply laced root system, which will be denoted by ΦL. The vectors of
ΦL are called the roots of L. We say that L is a root lattice if L is spanned by its
roots. The lattice spanZ(ΦL) is called the root sublattice of L. The reflections
in the roots of L preserve L and generates the reflection group Ref(L) of L. Say
that L is a simply laced root lattice if L = spanZ(ΦL). If L is a simply laced root
lattice then ΦL is a simply laced root system.

17.2 Example. One verifies that L(an), L(dn), L(e8),L(e7), L(e6) introdued
in the previous section are simply laced root lattices. Let Φ(an), Φ(dn), Φ(e8),
Φ(e7), Φ(e6) be the root systems of these lattices.

17.3. Configuration of two roots: Let u, v ∈ Φ. If u and v are linearly
dependent, then u = ±v, since u2 = v2. If |〈u, v〉| = 2, then det(gram{u, v}) = 0
which means u and v are linearly dependent (since U is positive definite)
and hence u = ±v. Since U is a positive definite inner product space,
det(gram{u, v}) ≥ 0. So 〈u, v〉2 ≤ 4. If u and v are non-proportional, then
|〈u, v〉| 6= 2, so 〈u, v〉 ∈ {−1, 0, 1}. Finally, if u 6= ±v and 〈u, v〉 > 0, then
〈u, v〉 = 1, so u− v = Rv(u) is a root.

17.4 Lemma. (a) Let V = U ⊗C. Then there exists a unique hermitian form
H on V such that H(u, u′) = 〈u, u′〉 for all u, u′ ∈ U . The action of W on U
extends uniquely to a C-linear action on V . This action of W on V preserves
the hermitian form H.

(b) Let s ∈ U \ {0} and consider Rs ∈ W acting on V . If x ∈ V and
Rs(x) = −x, then x ∈ sC.

(c) Let V1 be a complex subspace of V . Let s ∈ U \ {0} such that If s /∈ V1

and Rs(V1) = V1, then s ∈ V ⊥
1 (orthogonal complement with respect to H).

Proof. (a) Write V = U⊕iU and identify U inside V by u 7→ (u+i.0). Elements
of V can be uniquely written as (u+ iu′) with u, u′ ∈ U . Define H : V ×V → C
by

H(u+ iu′, v + iv′) = 〈u, v〉+ 〈u′, v′〉+ i(〈u′, v〉 − 〈u, v′〉)
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for u, u′, v, v′ ∈ U . One verifies that H is a hermitian form on V such that
H(u, u′) = 〈u, u′〉 for all u, u′ ∈ U . Let H is any hermitian form on V such
that H(u, u′) = 〈u, u′〉 for all u, u′ ∈ U , then H(u + iu′, u + iu′) = H(u, u) +
H(u′, u′) + i(H(u′, u) − H(u, u′)) = 〈u, u〉 + 〈u′, u′〉, since 〈 , 〉 is symmetric.
Thus the H-norm of every element of V is determined by 〈 , 〉 and hence (by
polarization) H is determined by 〈 , 〉.

(b) One has −x = Rs(x) = x− 2H(x, s)s/s2, so x = H(x, s)s/s2.
(c) Since Rs preserves V1 it also preserves V ⊥

1 . Write s = s1+ s2 where s1 ∈
V1 and s2 ∈ V ⊥

1 . Since s /∈ V1, we have s2 6= 0. Now Rs(s1)+Rs(s2) = Rs(s) =
−s1 − s2. Since Rs(s1) ∈ V1 and Rs(s2) ∈ V ⊥

1 , it follows that Rs(sj) = −sj .
Since s2 6= 0, part (b) implies that s2 must be a non-zero multiple of s. Since
s2 ∈ V ⊥

1 , we have s ∈ V ⊥
1 .

17.5 Lemma. Suppose Φ is an irreducible root system in U . Then V = U ⊗C
is an irreducible representation of the Weyl group W . Upto scaling, 〈 , 〉 is the
unique W -invariant positive definite bilinear form on U .

Proof. The bilinear form 〈 , 〉 on U extends to a hermitian formH on V = U⊗C
and the 〈 , 〉-invariant action of W on U uniquely extends to a C-linear H-
invariant action of W on V . Suppose V is not irreducible. Then V has proper
non-zero sub-representations V1 and V2 such that V = V1⊥HV2. Let Φj = Φ∩Vj

and let Uj = spanR(Φj). Let s ∈ Φ \ V1. Then Rs(V1) = V1 implies s ∈ V ⊥H

1 =
V2, so s ∈ Φ2. So Φ = Φ1

∐

Φ2. If Φ2 = ∅, then spanR(Φ1) = spanR(Φ) = U , so
V = spanC(Φ1) ⊆ V1, a contradiction. Thus Φ1 and Φ2 are non-empty. Since Φ
spans U , it follows that U1 and U2 span U . Also since V1 and V2 are orthogonal
with respect to H , the real spaces U1 and U2 are orthogonal with respect to
〈 , 〉, so U = U1⊥U2 (orthogonal direct sum with respect to 〈 , 〉). It follows
that Φ is an orthogonal direct sum of the root systems Φ1 and Φ2, contradicting
the irreducibility of Φ.

Suppose B and B′ are two non-degenerate W -invariant real bilinear forms
on U . Then they extend to non-degenerate W -invariant C-bilinear forms on V .
Since V is an irreducible represenation of W , these C-bilinar forms must agree
upto scaling (by Schur’s lemma), hence B and B′ must agree upto scaling.

17.6 Lemma. Define B : U × U → R by B(x, y) =
∑

r∈Φ〈r, x〉〈r, y〉. Then B
is a positive definite W -invariant bilinear form on U . So if Φ is an irreducible
root system in U , then cB(x, y) = 〈x, y〉 for some non-zero scalar c.

Proof. Follows from 17.5, once one verifies that B is a positive definite W -
invariant bilinear form on U .

17.7 Definition. A subset P of Φ is called a positive system if P consists of
all the roots on one side of a hyperplane in U not meeting any of the roots.

Fix a functional l : U → R such that l(v) 6= 0 for all v ∈ Φ. The definitions
that follow in this paragraph are subject to this choice. The choice of l defines
a positive system Φ+ = {v ∈ Φ: l(v) > 0}. Let Φ− = Φ \ Φ+. The elements of
Φ+ (resp. Φ−) are called the set of positive (resp. negative) roots. A positive
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root is called simple if it can not be written as a sum of two positive roots. A
simple system is a set of positive roots (with respect to some choice of positive
system). Define a partial order ≤ on the set of roots as follows: r ≤ s if (s−r) is
a non-negative integer linear combination of the simple roots. Define the Weyl
vector ρ to be ρ = 1

2

∑

r∈Φ+
r. Define the height of a root r to be ht(r) = 〈r, ρ〉.

17.8 Lemma. Let ∆ be a simple system. Let u, v ∈ ∆, u 6= v. Then 〈u, v〉 < 0.

Proof. Suppose 〈u, v〉 > 0. Then 17.3 implies that (u − v) is a root. So either
(u−v) or (v−u) is a positive root. If (u−v) is a positive root then u = v+(u−v)
contracdicts that u is simple. If (v−u) is positive then v = u+(v−u) contradicts
that v is simple.

17.9 Lemma. Let ∆ be a simple system. Then ∆ is a basis of U . Each root
can be written as an integer linear combination of ∆ with all coefficients having
the same sign (either all coefficients non-negative or all non-positive).

Proof. Suppose there is a dependence relation among ∆. Then we can la-
bel the simple roots s1, · · · , sn such that this dependence relation has the
form

∑r
i=1 cisi =

∑n
j=r+1 cjsj with all ci ≥ 0. Let v =

∑r
i=1 cisi. Then

v2 =
∑r

i=1

∑m
j=r+1 cicj〈si, sj〉 ≤ 0, so v = 0. It follows that 0 = l(v) =

∑r
i=1 cil(si) =

∑n
i=r+1 cil(si). Since l(si) > 0 for all i, it follows that ci = 0 for

all i. Thus the simple roots are linearly independent.
It remains to show that each positive root r can be written as r =

∑

r∈∆ crr
with each cr ∈ Z≥0. Suppose not. Then there is a positive root r with smallest
value of l(r) such that r can not be written as a non-negative integer linear
combination of simple roots. In particular r is not simple, so we can write
r = r1 + r2 for two positive roots r1 and r2. Then 0 < l(rj) < l(r), so r1 and r2
can be written as non-negative integer linear combination of the simple roots,
so the same is true for r as well.

17.10 Lemma. Let ∆ be a simple system. Let s ∈ ∆. Let ∆s be the set of
r ∈ ∆ such that 〈r, s〉 = −1. Let u ∈ Φ. Write u =

∑

r∈∆ nrr.

(a) Then Rs(u) =
(
∑

r∈∆s
nr − ns

)

s+
∑

r∈∆s
nrr +

∑

r∈∆\(∆s∪{s}) nrr.

(b) Suppose u ∈ Φ+ \ {s}. Then ∑

r∈∆s
nr ≥ ns and Rs(u) ∈ Φ+.

(c) One has Rs(Φ+) = (Φ+ \ {s}) ∪ {−s}.
(d) One has Rs(ρ) = ρ− s.
(e) If v ∈ Φ+, then 〈v, ρ〉 ≥ 1. One has 〈v, ρ〉 = 1 if and only if v is a simple

root. So the simple roots are precisely the roots of height 1.
(f) If s =

∑

r∈Φ+
mrr with mr ≥ 0 for all r, then ms = 1 and mr = 0 if

r 6= s. Simple roots are the positive roots that cannot be written as a non-trivial
non-negative integer linear combination of the positive roots.

Proof. (a) Part (a) is a direct computation. (b) Consider the expression for
Rs(u) in part (a). Since u 6= s, one of the terms of the second or the third sum
is non-zero. When we write a root as a linear combination of simple roots, all
coefficients must have the same sign. It follows that Rs(u) is a positive root
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and (
∑

r∈∆s
nr − ns) ≥ 0. This proves (b). Part (c) follows from part (b).

Part (c) implies that Rs(2ρ) = Rs(
∑

r∈Φ+
r) =

∑

r∈(Φ+\{s})∪{−s} r = 2ρ − 2s.

So (d) holds. Part (d) implies that 〈ρ, s〉 = 1 for each simple root. If v is
any positive root, by 17.9 we can write v =

∑

r∈∆ nrr with each nr ∈ Z≥. So
〈v, ρ〉 = ∑

r∈∆ nr ≥ 1. If 〈v, ρ〉 = 1, then nr = 1 for some r ∈ ∆ and nr′ = 0
for all r′ ∈ ∆ \ {r}. So v = r is a simple root. This proves (e). Finally, suppose
s =

∑

r∈Φ+
mrr with all mr ≥ 0. Then considering height of both sides, we find

that we must have ms = 1 and mr = 0 for all r 6= s. Hence (f) holds.

17.11 Theorem. (a) Let ∆ ⊆ Φ. The following are equivalent:
(i) ∆ is a simple system.
(ii) ∆ is a linearly independent set and each root can be written as an integer

linear combination of the elements of ∆ with all coefficients non-negative or all
coefficients non-positive.

(b) Suppose ∆ is a simple system. Let Φ′ be the set of roots that can be
written as a non-negative integer linear combination of elements of ∆. Then Φ′

is a positive system and ∆ is the corresponding system of simple roots.

Proof. Lemma 17.9 implies (i) implies (ii). Suppose ∆ is a set of roots satisfying
(ii). Since ∆ is a basis of U , there exists a functional l : U → R such that
l(r) = 1 for all r ∈ ∆. Then l(r) 6= 0 for all r ∈ Φ. Let Φ+ be the positive
system with respect to l. The condition on ∆ implies that Φ+ consists precisely
of the roots that can be written as non-negative linear combination of ∆, in
particular ∆ ⊆ Φ+. Let r be a simple root with respect to the positive system
Φ+. Write r =

∑

s∈∆ nss with all ns having the same sign. Since each s ∈ ∆
is a positive root and r is simple, lemma 17.10(f) implies that ns = 1 for some
s and nr = 0 for r 6= s, so r = s. So ∆ contains each simple root with respect
to the positive system Φ+. Since there are dim(U) = |∆| many simple roots, ∆
is the set of simple roots with respect to the positive system Φ+. This proves
part (a) and part (b) together.

17.12 Lemma. Let U1 and U2 be positive definite real inner product spaces.
Let Aj be a spanning subsets of Uj for j = 1, 2. Let f : A1 → A2 be a bijection
preserving inner products. Then f extends to a linear isometry from U1 to U2.

In particular, if Φ1 and Φ2 are root systems in U1 and U2 and f : Φ1 → Φ2

is an isomorphism of root systems (i.e. f is a bijection that preserves the inner
products between roots), then f extends to a linear isometry from U1 to U2.

Proof. Let ∆ ⊆ A1 be a basis of U1. Let x ∈ A1 such that x =
∑

s∈∆ css. Let
a ∈ A1. Then

〈
∑

s∈∆

csf(s), f(a)〉 =
∑

s∈∆

cs〈f(s), f(a)〉 =
∑

s∈∆

cs〈s, a〉 = 〈x, a〉 = 〈f(x), f(a)〉.

So the functional 〈∑s∈∆ csf(s)− f(x), 〉 vanishes on f(A1) = A2 which spans
U2, so

∑

s∈∆ csf(s) − f(x) = 0. So f agrees with the linear extension of f |∆.
Since A2 spans U2, the linear extension of f is onto U2. If f(x) = 0, then
0 = 〈f(x), f(x)〉 = 〈x, x〉, so x = 0, so f is injective.
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17.13 Definition. Let H = {r⊥ : r ∈ Φ}. Note that if Φ+ is any positive
system then H = {r⊥ : r ∈ Φ+}. Lemma 17.10(e) implies that ρ is not on any
hyperplane of H. Let C be a chamber containing ρ. This chamber C is called
Weyl chamber.

17.14 Theorem. Let Φ+ be a positive system, ∆ be the corresponding simple
system and ρ be the Weyl vector. Let S = {Rs : s ∈ ∆} be the set of simple
reflections.

(a) One has C = DH(ρ) = {x ∈ U : 〈x, r〉 > 0 ∀r ∈ Φ+}.
(b) One has C = ∩s∈∆Ds⊥(ρ).
(c) The walls of the weyl chamber C are the hyperplanes orthogonal to the

simple roots. The pair (W,S) is a Coxeter system. In particular, the reflections
in the simple root generate the Weyl group.

Proof. For each r ∈ Φ+, we have 〈r, ρ〉 > 0. Hence part (a). If 〈x, s〉 > 0 for
all simple root s, then 17.9 impli 〈x, r〉 > 0 for all r ∈ Φ+. So part (b) holds.
Now [B] prop 9, p 66 implies that each wall of C is a hyperplane orthogonal to
a simple root. Finally, fix any simple root s. Consider the vector Rs(ρ) = ρ− s.
Note that 〈ρ − s, s〉 < 0 while 〈ρ − s, r〉 ≥ 1 for all simple roots r 6= s since
〈s, r〉 ≤ 0. So ∩r∈∆\{s}Dr⊥(ρ) properly contains C. So 11.13 implies that s⊥

is a wall of C. From [B] theorem 1, p 78, it follows that (W,S) is a Coxeter
system.

17.15 Theorem. There is a natural one to one correspondence between the
following collections: (a) The set of chambers of H. (b) The set of positive
syetems. (c) The set of simple systems. The Weyl group acts simply transitively
on each of these collections.

Proof. A positive system Φ+ determines a simple system ∆ by defintion of
simple roots. Given the simple system ∆, we can recover the positive system Φ+

as the set of roots that can be written as non-negative integer linear combination
of ∆, see 17.11(b). A positive system Φ+ determines a chamber C = {x ∈
U : 〈x, r〉 > 0 ∀r ∈ Φ+}. Conversely, given a chamber C, pick any x ∈ C, then
〈x, r〉 6= 0 for all r ∈ Φ, so the functional 〈x, ·〉 determines a positive system Φ+.
These correspondences are inverse of each other and sets up bijection between
the collections (a), (b) and (c). Clearly the bijections are all compatible with W .
and we know from [B] that W acts simply transitively on the set of chambers.
So W acts simply transitively on each set.

17.16 Definition. We define a graph, called the Dynkin diagram of Φ, denoted
by Dynkin(Φ). The vertices of Dynkin(Φ) correspond to a set of simple roots and
two simple roots r and s are joined by an edge if and only 〈r, s〉 = −1. Since
the simple systems are all conjugate under W , the Dynkin diagram of Φ does
not depend on the choice of the simple system.

Let δ be a Dynkin diagram with n vertices. A set of vectors {v1, · · · , vn} in
a vector space is said to form the Dynkin diagram δ if v2i = 2 for all i and we can
label the vertices of δ with v1, · · · , vn such that 〈vi, vj〉 = −1 whenever there
is an edge between the vertices labeled by vi and vj and 〈vi, vj〉 = 0 otherwise.
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Often we shall use the same symbol to denote a Dynkin diagram and a set of
simple roots forming the Dynkin diagram.

17.17 Lemma. (a) Let s, x ∈ U \ {0}. If Rs(x) = −x, then x ∈ sR.
(b) Let U1 be a subspace of U . If s ∈ Φ \U1 and Rs(U1) = U1, then s ∈ U⊥

1 .
(c) Let U be an orthogonal direct sum of subspaces U1, · · · , Um with each Uj

stable under W . Let Φj = Uj ∩ Φ. Then Φ is an orthogonal direct sum of the
root systems Φ1, · · · ,Φm.

Proof. The proof of (a) and (b) are same as proof of part (b) and (c) of lemma
17.4. For part (c), Suppose U = U1⊥U2, and WUj = Uj . Let Φj = Φ∩Uj. Let
s ∈ Φ \ U1. Then Rs(U1) = U1 implies that s ∈ U2. Thus Φ = Φ1 ∪ Φ2. This
proves part (c) for m = 2. The general result follows by induction.

17.18 Theorem. Let ∆ = Dynkin(Φ).
(a) If Φ = Φ1⊥ · · ·⊥Φm, and ∆j = Dynkin(Φj), then ∆ =

∐

j ∆j.
(b) Conversely, if ∆ =

∐

j ∆j, then each ∆j is a simple system for a sub
root system Φj of Φ and Φ = Φ1⊥ · · ·⊥Φm.

(c) In particular, Φ is irreducible if and only if ∆ is connected.

Proof. (a) Let ∆j be a simple system forming Dynkin(Φj). The implication
(ii) =⇒ (i) of theorem 17.11 implies that

∐

j ∆j is a simple system for Φ. So
∐

j ∆j is a Dynkin diagram of Φ.
(b) Suppose ∆ is a disjoint union of ∆1 and ∆2. Let Uj = spanR(∆j) and

Φj = Uj ∩ Φ. Since the Weyl group W is generated by simple reflections, each
Uj is W -stable. Lemma 17.17(c) implies that Φ is an orthogonal direct sum of
Φ1 and Φ2. Let r ∈ Φ. We can uniquely write r =

∑

s∈∆1
nss +

∑

s∈∆2
nss

with each nj ∈ Z having the same sign. The first sum is in U1 and the second
is in U2. So if r ∈ Φ1, then the second sum must be 0. It follows that ∆1 is
a simple system for Φ1 and similarly ∆2 is a simple system of Φ2. This proves
(b) for m = 2. The general case follows by induction. part (c) follows from part
(a) and (b).

17.19 Lemma. If Φ is irreducible, then W acts transitively on Φ.

Proof. Fix a simple system ∆ and the corresponding Weyl chamber C. If s, s′ ∈
∆ are connected in the Dynkin diagram, then one verifies that RsR

′
s(s) = s′.

Since ∆ is connected, all the simple roots are conjugate under W . Pick r ∈ Φ.
By results of [B], the hyperplane r⊥ is a wall of some chamber. Since W acts
transitively on the set of chambers, r⊥ conjugate to some wall of C, hence r is
conjugate to a simple root.

17.20 Theorem. (a) The W orbit of a root r is the irreducible component of
Φ containing r.

(b) Φ can be uniquely decomposed as a orthogonal direct sum of irreducible
root systems.

(c) Let Φ = Φ1⊥ · · ·⊥Φm be the irreducible decomposition of Φ. Let ∆j be
the Dynkin diagram of Φj. Then each ∆j is connected and the Dynkin diaram
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of Φ is the disjoint union of ∆j’s. Conversely, let ∆1, · · · ,∆m be the connected
components of the Dynkin diagram of Φ. Then each ∆j is a simple system for
an irreducible sub-root system Φj of Φ and Φ = Φ1⊥ · · ·⊥Φm.

Proof. If Φ is not irreducible then it can be written as an orthogonal direct
sum of two sub-root systems. By induction, we have a decomposition Φ =
Φ1⊥ · · ·⊥Φm with each Φj irreducible. Let Wj be the Weyl group of Φj . If
s ∈ Φ, then s ∈ Φj or else s⊥Φj, so W preserves Φj for each j. Let r ∈ Φ.
Then r ∈ Φj for some j. Then Wr ⊆ Φj. On the other hand 17.19 implies
that Wjr = Φj . So Wr = Φj. So the irreducible Φj’s that occur in any
decomposition of Φ are nothing but the orbits of roots under W . This proves
part (a) and (b). Part (c) now follows from this and 17.18.

17.21 Theorem. The irreducible simply laced root systems are classified by the
Dynkin diagrams an (with n ≥ 1), dn (with n ≥ 3), e6, e7, e8.

Proof. One verifies that the root systems listed in 17.2 have the Dynkin diagrams
listed in the theorem. For each of these diagrams, one defines the the affine
diagram ∆̃. Each ∆̃ admits a numbering {ni : i ∈ ∆̃} with the property that
∑

j : (i,j)∈Edge(∆̃) nt = 2ni > 0 for all i ∈ ∆̃; such a numbering is called a
balanced numbering. Let I be a Dynkin diagram of a simply laced irreducible
root system. Let {si : i ∈ I} a set of simple roots labeling the Dynkin diagram I.
If I contains an affine diagram ∆̃, then consider v =

∑

i∈∆̃ nisi. Then v2 = 0,
so v = 0, which contradicts linear independence of the simple roots. Thus I
cannot contain an affine diagram. Now the theorem follows from the lemma
below.

17.22 Lemma (graph theory lemma for ADE). Any connected graph either
contains an affine diagram or is a spherical diagram.

A graph that properly contains an affine diagram is called an indefinite
diagram. Let D be a set of norm 2 vectors in a real inner product space such
that 〈s, s′〉 ∈ {0,−1} if s, s′ are distinct elements of D. Consider the graph with
vertex set is D and edges corresponding to pairs (s, s′) such that 〈s, s′〉 = −1.
We call this the (simply laced) Dynkin diagram of the set D. Write L = ZD.

17.23 Lemma. (a) If D is a connected finite type diagram, then L is positive
definite root lattice and D is a simple system for the root system L(2).

(b) If D is a connected affine diagram, then L is positive definite and affine.
(c) If D is indefinite, then L is indefinite.

proof of (c). Let A be an affine diagram contained in D. Let v = D − A that
is connected to A. Write {s1, · · · , sk} be the vertices of A. Let {s1, · · · , st} be
the vertices that are connected to v. Let n1, · · · , nk be the balanced numbering
on A. Write u = n1s1 + · · ·+ nksk. Then 〈u, sj〉 = 0 for all j, so u2 = 0. Also

〈v, u〉 = −∑t
j=1 nj ∈ Z<0. So (v + 2u)2 = 2 + 4〈u, v〉 < 0. So L contains both

positive and negative norm vectors.
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17.24 Lemma. Let L be a simply laced root lattice. Let ΦL = Φ1⊥ · · ·⊥Φm.
Let Lj = spanZ(Φj). Then Lj is a root sub-lattice of L with root system Φj and
L = L1⊥ · · ·⊥Lm.

Proof. One has Lj = spanZ(Φj) ⊆ spanZ(ΦL) = L, so Lj is a sublattice of
L. Since Lj is spanned by the it roots, Lj is a root lattice. Since Φ1, · · · ,Φm

are mutually orthogonal subsets in V , one has L1⊥ · · ·⊥Lm ⊆ L. Finally,
L1⊥ · · · ⊥Lm contains ΦL which spans L, so L1⊥ · · ·⊥Lm = L.

17.25 Corollary (classification of simply laced root lattices). Each simply laced
root lattice is an orthogonal direct sum of the root lattices L(an), L(dn), L(e6),
L(e7), L(e8). So there is a natural bijection between the set of simply laced root
lattices and the simply laced root systems.

Proof. Let L1 and L2 be simply laced root lattices with root systems Φ1 and
Φ2. Let Uj = Lj⊗ZR. Suppose f : Φ1 → Φ2 is an isomorphism of root systems.
Then f extends to a linear map from U1 to U2. Since Φj spans Lj, we have
f(L1) = L2, so f defines an isometry from L1 to L2. Thus we see that a simply
laced root lattice is determined by its root system. Now the corollary follows
from 17.24 and the classification of simply laced root systems.

17.26 Theorem. Assume that Φ is irreducible. Fix (Φ+,∆) and recall this
determines a partial order on Φ. Then there exists a unique root smax, called
the highest root, such that smax ≥ r for all r ∈ Φ.

Proof. Assume ∆ 6= a1. Let r be a root. Let smax =
∑

r∈∆ nrr be a root which
is maximal with respect to the patial order on the set of roots. If r ∈ Φ−,
then −r > r, so r is not maximal. So smax ∈ Φ+. Write smax =

∑

s∈∆ nss.
If possible suppose ns = 0 for some s ∈ ∆. Since the Dynkin diagram ∆ is
connected, there exists r, s ∈ ∆ such that ns = 0, nr 6= 0 and 〈r, s〉 = −1, for
otherwise, {r ∈ ∆: nr = 0} ∪ {r ∈ ∆: nr 6= 0} would be a disconnection of ∆.
Part (a) of 17.10 implies that Rs(smax) > smax contradicting the maximality of
smax. So nr > 0 for all r.

Since ∆ is connected and ∆ 6= a1, a simple root cannot be maximal. If s ∈ ∆
and 〈s, smax〉 < 0, then, since smax 6= −s, we must have 〈s, smax〉 = −1, which
implies Rs(smax) = smax+s is a root, contradicting the maximality of smax. So
〈smax, s〉 ≥ 0 for each s ∈ ∆. We must have 〈smax, s〉 > 0 for some s ∈ ∆ since
the simple roots form a basis of the vector space.

Now if s′ is another root of maximal height then we also have 〈s′, s〉 ≥ 0 for
all s ∈ ∆. So 〈smax, s

′〉 =
∑

r∈∆ ns〈s, s′〉 > 0. If smax 6= s′, then (smax − s′)
would be a root. By theorem 17.11, this would imply that either smax > s′ or
s′ > smax contradicting the maximality of smax and s′. Hence there is a unique
highest root.

The following lemma is from [Miyamoto]. We reproduce the proof since the
proof in [Miyamoto] has typos.

17.27 Lemma. Let N be a simply laced root lattice. Let v ∈ N such that
〈v,ΦN 〉 ⊆ {−1, 0, 1}. Then v = 0.
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Proof. Choose a simple system {e1, · · · , en} for ΦN . Write v =
∑n

j=1 ajej with
aj ∈ Z≥0 for j ≤ t and aj ∈ Z≤0 for j > t. By changing v to its negative if
necessary, we may without loss assume that a1 > 0, that is, t ≥ 1.

Write v+ =
∑t

j=1 ajej , v
− = v − v+ and |v+| = ∑t

j=1 aj . Write u ≫ w if
(u−w) is a positive linear combination of the simple roots. Suppose there exists
v contradicting the statement of the lemma. Choose such a v with minimal value
of |v+|. Let w be a highest root such that w ≪ v+. In other words w is a root
of the form

∑t
j=1 cjej with 0 ≤ cj ≤ aj for all j = 1, · · · , t and with maximal

possible value of
∑

j cj among these roots. Then 〈v, w〉 ∈ {−1, 0, 1}. If k > t,

then 〈w, ek〉 =
∑t

j=1 cj〈ej , ek〉 ≤ 0, since the inner products between disrtinct

simple roots are non-positive. So 〈w, v−〉 =
∑n

k=t+1 ak〈w, ek〉 ≥ 0. It follows
that

0 > 〈v, w〉 − 2 = 〈w, v − w〉 =
t

∑

j=1

(aj − cj)〈w, ej〉+ 〈w, v−〉.

and hence 0 >
∑t

j=1(aj − cj)〈w, ej〉. So there exists some i with 1 ≤ i ≤ t
such that 〈w, ei〉 < 0 and (ai − ci) > 0. Since w and ei are roots, we have
〈w, ei〉 = −1. It follows that (ei + w) = Rei(w) = ei +

∑t
j=1 cjej is a root

satisfying v+ ≫ (ei + w) ≫ w, contradicting the maximality of w.
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18 Affine reflection groups

In this section we study the affine reflection groups of simply laced root lattices.

18.1. Affine isometries: Let V be a real positive definite finite dimensional
inner product space. A map T : V → V is called an affine transformation if
x 7→ (T (x)− T (0)) is a linear transformation. Let Aff(V ) be the group of affine
transformations of V .

A coset H of a codimension one subspace of V is called an affine hyperplane
in V . For v ∈ V and k ∈ R, define the affine hyperplane

H(v, k) := {x ∈ V : 〈x, v〉 = k}. (3)

We write H(v, 0) = H(v). The orthogonal reflection RH in an affine hyperplane
H is called an affine reflection and H is called the mirror of this reflecton. So
RH(v) = Rv. Note the the affine reflection in H is the unique isometry of V of
order 2 that fixes H . For v ∈ V , let Tv : V → V defined by

Tv(x) = v + x

be the translation by v. If S is a subgroup of V , then let T (S) = {Tv : v ∈ S}.
Affine reflections and translations are examples of affine transformations.

18.2 Lemma. Let S be an additive subgroup of V . Let G be a group of au-
tomorphisms of V such that G preserves S. Then G normalizes T (S) and
G ∩ T (S) = {id}. So the subgroup of Aff(V ) generated by G and T (S) is iso-
morphic to the semidirect product S ⋊G.

Proof. If g : V → V is any invertible map then one verifies that gTvg
−1 = Tgv.

So if G preserves S ⊆ V , then G normalizes T (S). Also, G ∩ T (S) = {id} since
nontrivial translations do not fix 0. So the group generated by G and T (S) in
Aff(V ) is a semidirect product. Finally note that T (S) ≃ S and the conjugation
action of G on T (S) correspond to the usual action of G on S.

18.3. Affine reflections: Let v ∈ V and v2 = 2. Let Rv be the orthogonal
reflecton in v. For k ∈ Z, define

Rv,k = Tkv ◦Rv = Rv ◦ T−kv.

Suppose x ∈ V such that 〈x, v〉 = k. Then

〈Rv,k(x), v〉 = 〈T−kvx,−v〉 = 〈x− kv,−v〉 = −〈x, v〉+ kv2 = −k + 2k = k.

So Rv,k fixes the hyperplane Hv,k and

R2
v,k = TkvRvTkvR

−1
v = TkvTRv(kv) = TkvT−kv = id .

So Rv,k is the affine reflection in the hyperplane H(v, k).
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18.4. Simply laced affine reflection groups: Let K be a simply laced root
lattice with root system Φ and Weyl group W . Let V = K ⊗ R. Let H be the
set of mirrors of W and and let

Haff = {H(v, k) : v ∈ Φ, k ∈ Z}.

The affine reflection group W aff of Φ (or K) is defined to be the group generated
by the affine reflections in the hyperplanes Haff . Sometimes we write W aff =
AR(K). Since Rv,k = Tkv ◦Rv, the affine reflection group W aff is the subgroup
of Aff(V ) generated by the finite reflection group W and the translations T (K).
Lemma 18.2 implies that W aff = T (K) ⋊ W ≃ K ⋊ W . So we have a short
exact sequence

1 → K → W aff → W → 1.

The projection W aff → W is given by g 7→ ḡ = T−g(0) ◦ g. So every g ∈ W aff

can be uniquely written as g = Tg(0) ◦ ḡ with ḡ ∈ W . From the description

W aff ≃ K ⋊ W one finds easily that Haff is stable under W aff and W aff acts
properly discontinuously on V . So W aff is a discrete reflection group acting on
V and Haff is the set of mirrors of W aff .

18.5 Theorem. Let (K,Φ,W, V ) be as in 18.4. Assume Φ is irreducible. Fix a
positive system Φ+ for Φ. Let s1, · · · , sn be the simple roots, let C be the Weyl
chamber, and let smax be the highest root for Φ. Then

Caff = C ∩DH(smax,1)(0) = C ∩ {x ∈ V : 〈x, smax〉 < 1}

is the unique chamber of W aff such that Caff ⊆ C and 0 ∈ cl(Caff). The walls
of Caff are H(s1), · · · , H(sn), H(smax, 1).

Proof. Let C∗ be the chamber of W aff containing ǫρ where ǫ be a small positive
real and ρ is the Weyl vector. If r ∈ Φ+, verify that

∩n∈ZDH(r,n)(ǫρ) = {x ∈ V : 0 < 〈x, r〉 < 1}.

Since Haff = {H(r, n) : r ∈ Φ+, n ∈ Z}, it follows that

C∗ = ∩r∈Φ+
{x ∈ V : 0 < 〈x, r〉 < 1}.

Since Caff is the intersection of a set of half spaces bounded by hyperplanes
in Haff , the set Caff is contained in a chamber of W aff . Let x ∈ Caff and r ∈ Φ+.
Since 〈x, sj〉 > 0 for j = 1, · · · , n, we have 〈x, r〉 > 0. By 17.26, (smax − r) is
a non-negative integer linear combination of simple roots, so 0 < 〈x, smax − r〉,
which implies 〈x, r〉 < 〈x, smax〉 < 1. It follows that Caff is contained in C∗. So
Caff is a chamber of W aff . Finally note that 0 is not a limit point of C \ Caff .
So Caff is the only chamber of W aff that is contained in C and contains 0 in its
closure.

18.6 Theorem. Let (K,Φ,W, V ) be as in 18.4. The reflection group W aff acts
transitively on the chambers of W aff .
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Proof. See [B].

18.7 Theorem. Let (K,Φ,W, V ) be as in 18.4. Assume W is irreducible. Let
Ca be a chamber of W aff such that 0 ∈ cl(Ca). Let H0 be the walls of C

a that pass
through 0. Then C = ∩H∈H0

DH(Ca) is the unique chamber of W containing Ca.
Further, Ca is the unique chamber of W aff such that Ca ⊆ C and 0 ∈ cl(Ca).
There is a simple system s1, · · · , sn of W such that H0 = {s⊥1 , · · · , s⊥n }. The
walls of the chamber Ca are H(smax, 1), s

⊥
1 , · · · , s⊥n , where smax is the higest

root of W with respect to the simple system s1, · · · , sn. One has

C = ∩n
j=1{x ∈ V : 〈x, sj〉 > 0} and Caff = C ∩ {x ∈ V : 〈x, smax〉 < 1}.

Proof. The chamber Ca does not meet any hyperplane of W aff . In particular,
Ca does not meet any hyperplane ofW . So Ca is contained in a unique chamber
C of W . By theorem 17.15, there exists a simple system s1, · · · , sn of W such
that C is the Weyl chamber with respect to this simple system. In other words,
the walls of C are s⊥1 , · · · , s⊥n and

C = ∩n
i=1Ds⊥

j
(C) = ∩n

i=1Ds⊥
j
(Ca).

By theorem 18.5, there exists a unique chamber Caff of W aff such that Caff ⊆ C
and 0 ∈ cl(Caff). So Ca = Caff . Now 18.5 implies

Caff = C ∩ {x ∈ V : 〈x, smax〉 < 1}

where smax is the highest root of W with respect to the simple system s1, · · · , sn
and the walls of Caff are H(smax, 1), s

⊥
1 , · · · , s⊥n . So H0 = {s⊥1 , · · · , s⊥n }.

18.8 Corollary. Let (K,Φ,W, V ) be as in 18.4. Assume W is irreducible.
Let Ca be a chamber of W aff . Then there exists a v, s0, s1, · · · , sn ∈ K such
that s1, · · · , sn is a simple system for K, s0 is the corresponding highest root
and the walls of Ca obtained by trainslating H(s0, 1), H(s1), · · · , H(sn) by the
translation Tv.

Proof. By [B], the affine reflection group W aff acts transitively on the set of
chambers, so there exists g ∈ W aff such that 0 ∈ cl(gCa). We can write g =
g1T−v for some g1 ∈ W and some v ∈ K. Since g10 = 0, it follows that 0 ∈
cl(T−vC

a). In other words, there is a chamber C0 of W aff such that 0 ∈ cl(C0)
and Ca = Tv(C

0). The previous lemma gives us a description of the chambers
of W aff whose closure contain 0.

18.9 Lemma. Let K be a simply laced root lattice and let Φ be the root system
of K. Let Φ = Φ1⊥ · · ·⊥Φm be the irreducible decomposition of Φ and K =
K1⊥ · · · ⊥Km be the corresponding orthogonal decomposition of K (see 17.24).
Then AR(K) ≃ AR(K1) × · · · × AR(Km). Let Cj be a chamber for the affine
reflection group of Φj acting on Kj ⊗ R. then C1 × · · · × Cm is a chamber for
the affine reflection group of Φ acting on K ⊗ R.
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Proof. We argue for m = 2. The general argument is identical. Suppose K =
K1⊥K2. One verifies that the natural map AR(K1) × AR(K2) → AR(K1⊥K2)
is onto since all the reflections and translations of AR(K1⊥K2) are in the image
of the map. So the actions of AR(K1) × AR(K2) and AR(K1⊥K2) on K1⊥K2

are isomorphic. It follows that if Cj is a chamber of AR(Kj) acting on Kj ⊗R,
then C1 × C2 is a chamber of AR(K) acting on K ⊗ R.

18.10 Definition (Affine Dynkin diagrams). Let (K,Φ,W ) be as in 18.4. The
affine Dynkin diagram of type Φ is, by definition the diagram obtained by adding
the lowest root (negative of the highest root) to the set of simple roots. By
lemma 18.8, the walls of a chamber of AR(K) acting on K ⊗R correspond to a
set of roots s0, · · · , sn where {s0, · · · , sn} is a set of simple roots and s0 is the
corresponding lowest root. So the walls of a chamber of W aff correspond to the
vertices of the affine Dynkin diagram.

Let K be a lattice with simply laced root system Φ, not necessarily irre-
ducible. Let Φ1, · · · ,Φk be the irreducible components of Φ. Then the affine
Dynkin diagram of Φ (or K) is, by definition, obtained by changing all com-
ponents of the Dynkin diagram of Φ to the corresponding affine diagrams, or
in other words, by adding the lowest root to a simple system for Φj for each
j. Lemma 18.9 imply that the vertices of the affine diagram of K correspond
bijectively to the walls of a chamber of AR(K) acting on K ⊗ R

For the next two lemmas assume the following setup. Let K be a simply
laced root lattice and Φ be the root system of K. Let W (resp. W aff) be the
reflection group (resp. affine reflection group) of K. Let H (resp. Haff) be the
set of half spaces in K⊗R bounded by the mirrors of W (resp. W aff). Consider
the singular lattice K0 = K ⊕ Z where Z spans the one dimensional radical of
K0. The roots of K0 are Φ0 = {(v, k) : v ∈ Φ, k ∈ Z}. Let W 0 be the reflection
group of the singular lattice K0.

18.11 Lemma. (a) The intersection of all the mirrors of W is {0}.
(b) W aff acts faithfully on Haff .

Proof. (a) Let Φ1 (resp. Φ2) be root systems in V1 and V2. Let Aj be the
intersection of the mirrors of Vj . Then the intersection of the mirrors of the
root system Φ1⊥Φ2 in V1⊥V2 is (A1 × V2) ∩ (V1 × A2) = A1 × A2. So if the
intersection of the mirrors of Φ1 and Φ2 is {0}, then the same holds for Φ1⊥Φ2.
Since Φ is an orthogonal direct sum of irreducible simply laced root systems,
it suffices to check part (a) when Φ is irreducible and this can be done directly
using the classification.

(b) Suppose g ∈ W aff fixes all the half spaces in Haff . In particular, g setwise
fixes all the mirrors ofW aff through the origin, i.e. all the mirrors ofW . By part
(a), the intersection of all these mirrors is {0}, so g fixes 0, hence g ∈ W . From
17.15, we know that W acts simply transitively H, so we must have g = id.

18.12 Lemma. There is an isomorphism of permutation actions between
(W aff ,Haff) and (W 0,Φ0). In particular, there is an isomorphism W 0 ≃ W aff
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such that the reflection R(v,k) of the singular lattice corresponds to the affine
reflection Rv,k.

Proof. Since W 0 acts faithfully on K0 = span(Φ0), the group must also act
faithfully on Φ0, that is, we may identify W 0 as a subgroup of Aut(Φ0) (the set
of bijefctons of Φ0). By Lemma 18.11, we may identify W aff as a subgroup of
Aut(Haff). Define

α : Φ0 → Haff given by (v, k) 7→ α(v, k) := {x ∈ V : 〈x, v〉 > k}.

Each half space in Haff is bounded by some mirror Hv,k. Observe that the two
half spaces bounded by Hv,k are α(v, k) and α(−v,−k) = {x ∈ V : 〈x, v〉 < k},
so α is onto. If α(v, k) = α(v′, k′), then the corresponding bounding hyperplanes
must be equal, that is Hv,k = Hv′,k′ . Verify that this can happen if and only
if (v′, k′) = ±(v, k). Since α(v, k) and α(−v,−k) are distinct, α is also one to
one. The bijection α : Φ0 → Haff induces a group isomorphism α∗ : Aut(Φ0) →
Aut(Haff) such that α(gr) = α∗(g)α(r) for all g ∈ Aut(Φ0) and r ∈ Φ0. We shall
verify that

α(R(u,j)(v, k)) = Ru,j(α(v, k)) for all (u, j), (v, k) ∈ Φ0. (4)

Note that x ∈ Ru,j(α(v, k)) if and only ifR−1
u,j(x) ∈ α(v, k), that is 〈R−1

u,j(x), v〉 >
k. We compute

〈R−1
u,jx, v〉 = 〈T−jux,Ruv〉 = 〈x− ju,Ruv〉 = 〈x,Ruv〉+ j〈u, v〉.

It follows that x ∈ Ru,j(α(v, k)) if and only if 〈x,Ruv〉+ j〈u, v〉 > k, or in other
words x ∈ α(Ru(v), k−j〈u, v〉) = α(R(u,j)(v, k)). This proves equation (4). This
equation amounts to saying that under α∗, the reflection R(u,j) acting on Φ0

corresponds to the Ru,j acting on Haff . So α∗ induces an isomorphism between
the groups W 0 = 〈R(u,j) : (u, j) ∈ Φ0〉 and W aff = 〈Ru,j : u ∈ Φ, j ∈ Z〉.
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19 Mirror arrangements at cusps

Maintain the setup of 13.1. Let W be a hyperbolic reflection group in Hn with
mirror arrangement H. Let v ∈ C+ be a cusp of H (recall: C+ is the positive
light cone). Let Wv be the stabilizer of v in W . By theorem 13.8, we know that
Wv is the subgroup of W generated by the reflections in the hyperplanes Hv.
For t ≥ 0, the sets

∂Bt(v) = {x ∈ Rn,1 : x2 = −1, 〈x, v〉 = −t}

are the horospheres areound v. Fix a null vector v′ such that 〈v, v′〉 = −1. Let
u 7→ [u] be the projection from v⊥ → v⊥/v. Recall the map j : Hn → v⊥ and
J : Hn → v⊥/v defined by

j(x) = 〈x, v〉−1x+ v′ and J(x) = [j(x)].

19.1 Lemma. (a) For each t ≥ 0, the map J : ∂Bt(v) → v⊥/v is an isomor-
phism.

(b) Let H be a hyperplane in Hn through v. Choose s ∈ V such that s2 = 2
and s⊥ = H. Then J(H) is equal to the affine hyperplane H([s], 〈v′, s〉) (see
equation (3)) in v⊥/v. The map j takes the two sides of H onto the two sides
of J(H); in particular, J−1(J(H)) = H. The reflection in H corresponds to
reflection in J(H) under this correspondence.

Proof. (a) Identify span{v, v′}⊥ with v⊥/v. Define

ft : span{v, v′}⊥ → Rn,1 by ft(u) = t((u2 + t−2)v2 + v′ − u).

Verify that 〈ft(u), v〉 = −t and ft(v)
2 = −1, so ft(u) ∈ ∂Bt(v). One verifies

that ft and J |∂Bt(v) are mutual inverses.
(b) Let c = 〈v′, s〉. Let x ∈ Hn. Then

〈J(x), [s]〉 = 〈j(x), s〉 = 〈x, s〉〈x, v〉−1 + c.

So x ∈ H if and only if 〈x, s〉 = 0 if and only if 〈J(x), [s]〉 = c. Since 〈x, v〉 < 0
for all x ∈ Hn, It follows that, under J , the hyperplane H maps to the affine
hyperplane H([s], c). and the two sides of H map to the two sides of H([s], c).
By part (a), we know that J is onto, hence J(H) is equal to the affine hyperplane
H([s], c) and the two sides of H map onto the two sides of H([s], c).

Let u ∈ v⊥/v. Let x1, x2 ∈ Hn such that u = J(x1) = J(x2). So x1

〈x1,v〉 −
x2

〈x2,v〉 ∈ Rv. Since 〈s, v〉 = 0, we have 〈x1,s〉
〈x1,v〉 −

〈x2,s〉
〈x2,v〉 = 0. Then

j(Rs(xi)) = j(xi − 〈xi, s〉s) = xi−〈xi,s〉s
〈xi,v〉 + v′ = j(xi)− 〈xi,s〉

〈xi,v〉s.

So J(Rs(x1)) = J(Rs(x2)). So there is a well defined map φ : v⊥/v → v⊥/v
given by φ(u) = JRsJ

−1(u). One computes

RH([s],c)(u) = u− 〈u, s〉[s] + c[s] = u− 〈 x1

〈x1,v〉 + v′, s〉[s] + c[s] = u− 〈xi,s〉
〈xi,v〉 [s].

So RH([s],c)(u) = JRs(x1) = JRsJ
−1(u) = φ(u), hence φ = RH([s],c).
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19.2 Definition. Consider the affine hyperplane arrangement

Haff
v = {J(H) : H ∈ Hv}.

in v⊥/v. Let W aff
v be the subgroup of Affine(v⊥/v) generated by the reflections

in the hyperplanes of Haff
v . Let H ∈ Hv and H+ and H− be the two sides of H .

Then 19.1 implies J(H) is a hyperplane in Haff
v and J(H+) and J(H−) are the

two sides of J(H) and J−1J(H±) = H±. So if x ∈ Hn \H , then

J(DH(x)) = DJ(H)(J(x)) and J−1J(DH(x)) = DH(x).

So J sets up a bijection between the hyperplanes and half space of Hv with
the hyperplanes and half spaces of Haff

v . fi By 19.1(a), we have an isomorphism
J : ∂Bt(v) → v⊥/v. Let cJ(g) = JgJ−1. Part (b) of 19.1 shows that cJ (Wv) =
W aff

v . Thus, for each t ≥ 0,

(J, cJ) : (∂Bt(v),Wv) → (v⊥/v,W aff
v )

is an isomorphism in the category of permutation actions with inverse ft.
Let K be a compact subset of v⊥/v. Fix t > 0. Then ft(K) is a compact

subset of ∂Bt(v). So A = {g ∈ Wv : gft(K) ∩ ft(K) 6= ∅} is a finite set, which
implies {σ ∈ W aff

v : σK ∩K 6= ∅} = cJ (A) is finite. So W aff
v is a discrete affine

reflection group acting on v⊥/v.

19.3 Lemma. (a) The map J sets up a bijection between the facets of Wv

acting on Hn, and the facets of W aff
v acting on v⊥/v.

(b) If F is a facet of Hv, then J−1J(F ) = F .
(c) If F is a facet of Hv, then J(cl(F )) = cl(J(F )).
(d) If C is a chamber of Wv, then J(C) is a chamber of W aff

v and J sets up
a bijection between the walls of C and the walls of J(C).

Proof. (a) Suppose x, y ∈ Hn belong to the same facet of Hv. Let L be any
hyperplane of Haff

v . Then L = J(H) for some H ∈ Hv. Either x and y both
belong to H in which case J(x) and J(y) both belong to L, or else x and y are
strictly on the same side of H , in which case J(x) and J(y) are strictly on the
same side of L. So J(x) and J(y) belong to the same facet of Haff

v . It follows
that each facet of Hv maps into a facet of Haff

v . Since the facets of Hv (resp.
Haff

v ) form a partition of Hn (resp. v⊥/v) and the map J is onto, it follows that
the image of a facet of Hv under J must be equal to a facet of Haff

v . This proves
part (a). part (b) follows from part (a).

(c) Since J is continuous J(cl(F )) ⊆ cl(J(F )). Fix t > 0. Recall that
J : ∂Bt(v) → v⊥/v is an isomorphism with an continuous inverse f . So if x ∈
cl(J(F )), then y = f(x) ∈ f(cl(J(F )) = cl(f(J(F )) ⊆ cl(J−1J(F )) ⊆ cl(F ), so
x = J(y) ∈ J(cl(F )). This proves part (c).

(d) Let x ∈ Hn. Clearly, J sets up a bijection between the hyperplanes of
Hv through x and the hyperplanes of Haff

v through J(x). Let H be a wall of C.
Then there exist x ∈ cl(C)∩H such that H is the only mirror of Hv through x.
Then J(x) ∈ J(cl(C))∩J(H) = cl(J(C))∩J(H) and J(H) is the only mirror of
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Haff
v through J(x). So J(H) is a wall of J(C). Conversely, suppose H ∈ Hv such

that J(H) is a wall of J(C). Then there exists y ∈ cl(J(C)) ∩ J(H) such that
J(H) is the only mirror of Haff

v through y. Fix t > 0 and consider the inverse f
of J |∂Bt(v). Then x = f(y) ∈ f(cl(J(C)) ⊆ cl(f(J(C))) ⊆ cl(C). Since J(H) is

the only wall of Haff
v through f(x) = y, it follows that H is the only wall of Hv

through x. So H is a wall of C.
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20 Reflection groups of Lorentizian lattices

20.1 Definition. A lattice L is a Z-module of finite rank with a non-degenerate
Q-valued bilinear form 〈 , 〉. Say that L is an integral, if the bilinear form taked
values in Z. A root of L is a positive norm vector s such that Rs ∈ Aut(L). The
reflections in the roots of L generates the reflection group Ref(L) of L. Say that
L is a root lattice is L is spanned by its roots. Say that L is Lorentzian if L has
signature (n, 1).

We are interested in studying the action of discrete groups of the form Aut(L)
or Ref(L) on the hyperbolic space P−(L ⊗ R). The set {x ∈ L ⊗ R : x2 = −1}
is a disjoint union of two sheets. Picking a hyperboloid model for P−(L ⊗ R)
amounts to choosing one of the sheets. We write Aut+(L) to be the index 2
subgroup of Aut(L) that preserves both sheets of the hyperboloid.

20.2 Lemma. Let L be a Lorentzian lattice. Then Aut(L) acts properly dis-
continuously on the hyperbolic space P−(L⊗ R).

Proof. The bilinear form extends to U = L⊗Q. By [S] p. 30, theorem 1, there
exists a basis e0, · · · , en of U such that 〈ei, ej〉 = 0. Since 〈 , 〉 has signature
(n, 1), by re-indexing the ej ’s and scaling them by positive integers if required,
we may assume that a0 = −e20, a1 = e21, · · · , an = e2n are positive intgers

(x0e0 + · · ·+ xnen)
2 = −a0x

2
0 + a1x

2
1 + · · ·+ anx

2
n.

Now, M =
∑n

j=0 Zej is an lattice in U such that L ⊗ Q = M ⊗ Q = U . So
Aut(L) and Aut(M) are commensurable in Aut(U). Thus it suffices to show that
Aut(M) acts properly discontinuously on the hyperbolic space.

Identify Rn,1 with U ⊗R by (t0, · · · , tn) 7→ t0a
−1/2
0 e0 + · · ·+ tna

−1/2
n en. As

a concrete hyperboloid model on which Aut+(M) acts, we take

Hn = {x ∈ U ⊗ R : 〈x, e0〉 < 0, x2 = −1}.

Any compact set in Hn is contained ball around y0 = e0/
√
a0. So it suffices to

show that, given any r > 0, the ball gBr(y0) intersects Br(y0) only for finitely
many g ∈ Aut(L). Since g ∈ Aut(L) acts on Hn by isometies, if d(gy0, y0) > 2r
then gBr(y0) = Br(gy0) and Br(y0) are disjoint. So we are reduced to showing
that {g ∈ Aut(L) : d(gy0, y0) < r} is finite for all r. Fix r > 0. Let

S = {x ∈ L : 〈x, e0〉 < 0, d(x, e0) < r, x2 = −a0}.

If g ∈ Aut+(M) and d(ge0, e0) < r, then ge0 ∈ S. For each x ∈ S, the
set {g ∈ Aut+(M) : ge0 = x} is a coset of the stabilizer of e0 in Aut+(M),
and this stabilizer is finite since it preseves the positive definite lattice e⊥0 =
∑n

j=1 Zej . It remains to show S is a finite set. Let x =
∑n

j=0 xjej ∈ S. Then
〈x, e0〉 < 0 is equivalent to x0 > 0. The condition d(x, e0) < r is equivalent to
cosh−1(−〈x/√a0, e0/

√
a0〉) < r or x0 < cosh r. So x0 must be in the finite set

(0, cosh r)∩Z. Finally, x2 = −a0 implies a1x
2
1 + · · ·+ anx

2
n = a0x

2
0 − a0. So for

each fixed x0, there are finitely many choices for (x1, · · · , xn).
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Setup: Let L be a Z-root lattice of signature (n, 1) with each root having
norm 2. Let V = L⊗R ≃ Rn+1. Let Hn be the hyperbolic space of V . If r ∈ V
has positive norm, then let H±

r = {x ∈ Hn : ± 〈x, r〉 > 0} be the two sides
of r⊥. Let Φ be the set of roots of L and let W be the reflection group of L,
the group generated by reflections in Φ. Then W modulo scalars act faithfully
on Hn. Let M be the set of mirrors of W in Hn. The connected components
of Hn \ M are called the chambers of W . The group W acts transitively on
the chambers. Fix a chamber C. Then W is generated by reflections in the
walls of C. Let ∆ be the set of roots of L, one for each wall of C, such that
C = ∩r∈∆H

−
r . We say that ∆ is the set of simple roots corresponding to the

chamber ∆. A vector ρ is called a Weyl vector for C, if ρ ∈ C̄ and 〈r, ρ〉 = −1
for all r ∈ ∆.

20.3 Lemma. Let L be a Lorentzian integral Z-lattice. If r is a root of L, then
r2 | 4[L′ : L]2.

Proof. For all x ∈ L, we have we have Rr(x) = x − 2r−2〈r, x〉r ∈ L, so
2r−2〈r, x〉r ∈ L. Since r is a primitive vector in L, we must have 〈2r/r2, x〉 ∈ Z
for all x ∈ L, so 2r/r2 ∈ L′ ⊆ d−1L, so 2dr/r2 ∈ L. Since L is a integral lattice,
(2dr/r2)2 = 4d2/r2 ∈ Z.
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21 The even self-dual lattice of signature (25,1)

21.1 Definition. An even self dual positive definite lattice of dimension 24
is called a Niemeier lattice. There is a unique Niemeier lattice with no roots
(hence minimum norm 4), called the Leech lattice and denoted by Λ. The Leech
lattice has covering radius

√
2. There are 23 other Niemeier lattices, each with

a root system of rank 24. Let Φ be an irreducible simply laced root system of
rank n. The Coxeter number of Φ is defined to be |Φ|/n. The root systems of
type an, dn, e6, e7, e8 have Coxeter numbers n+1, 2n− 2, 12, 18, 30 respectively.
Consider a simply laced root system of rank 24 such that each of its irreducible
component has the same Coxeter number. There are 23 such root systems.
They are:

a241 , a122 , a83, a
6
4, a

4
6, a

3
8, a

2
12, a24, a

4
5d4, a

2
9d6, a15d9, a11d7e6, a17e7,

d83, d
6
4, d

4
6, d

3
8, d

2
12, d24, d10e

2
7, d16e8, e

4
6, e

3
8.

For each of these root systems, there is a unique Niemeier Lattice having that
root system. In particular, a Niemeier lattice is characterized by its root system.
If N is a Niemeier lattice then N⊥H ≃ II25,1. For this section, we let L = II25,1;
the unique even self dual lattice of signature (25, 1). One has L ⊆ V = R25,1.
The norm 2 vectors (or short vectors) of L, denoted L(2), are the roots of L.
Reflections in these roots generate the reflection group R(L) of L.

21.2 Definition. Fix a Leech cusp ρ in L. Define the define the height of r ∈ L
(with respect to ρ) to be

ht(r) = −〈r, ρ〉.
We say v ∈ R25,1 is a positive vector if it has positive height. Choose a cusp
ρ′ such that 〈ρ, ρ′〉 = −1. This lets us split off a hyperbolic cell H = Zρ+ Zρ′

and get a decomposition L = Λ⊥H , where Λ = H⊥ is the Leech lattice. This
lets us write v ∈ L in the form v = λ+mρ′ + nρ ∈ L in the form v = (λ;m,n)
where λ ∈ Λ, m,n ∈ Z. We shall call it a Leech coordinate system for L.
In this coordinate system ρ = (0; 0, 1), ρ′ = (0; 1, 0) and v2 = λ2 − 2mn.
The hyperboloid model of H25 consists of all positive vectors of norm −1. In
the Leech coordinates, H25 consists of vectors (α;m,n) such that α ∈ Λ ⊗ R,
α2 − 2mn = −1 and m > 0. Given z ∈ L(0), let

Lrk(z) = {s ∈ L(2) : 〈r, z〉 = −k}.
So Lrk(ρ) is the set of roots of height k. The roots Lr(ρ) = Lr1(ρ) of height one
are called the Leech roots (with respect to ρ). The Leech roots are indexed by
the vectors of the Leech lattice Λ. For each λ ∈ Λ, one has a Leech root

rλ = (λ; 1, (λ2/2− 1)), where λ ∈ Λ.

21.3 Lemma. Let a = (α;m, ∗) ∈ L⊗ R, m = ht(a) 6= 0. Then

〈rλ, a〉 = m− m
2 (λ − α

m )2 + a2

2m .
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Proof. Write the expression for 〈rλ, a〉 and complete squares. Let a = (α;m,n).

〈rλ, a〉 = 〈λ, α〉 −m(λ
2

2 − 1)− n = m− m
2 (λ− α

m )2 + α2

2m − n

21.4 Lemma. If rλ and rµ are two distinct Leech roots, then 〈rλ, rµ〉 ≤ 0.

Proof. Using 21.3, with a = rµ, we get 〈rλ, rµ〉 = 2− 1
2 (λ−µ)2. Since the Leech

lattice has minimum norm 4, the lemma follows.

The lemmas below shows that the Leech roots form a set of “simple roots”
for the reflection group of L.

21.5 Theorem (height reduction). (a) Let a = (α;m, ∗) be a root of L with
ht(a) = m > 1. Then there exists a Leech root rλ such that 〈a, rλ〉 ∈ [1,m] and
0 < ht(Rrλ(a)) < m.

(b) R(L) is generated by the reflections in the Leech roots.
(c) Every positive root of L can be written (not uniquely) as a non-negative

integer linear combination of the Leech roots.

Proof. (a) Let rλ be a Leech root. From lemma 21.3 one has

〈rλ, a〉 = m− m
2 (λ− α

m )2 + 1
m .

Since the covering Radius of the Leech lattice is
√
2, we can choose λ ∈ Λ such

that (λ− α
m )2 ∈ [0, 2]. So m

2 (λ− α
m)2 ∈ [0,m] and hence m−m

2 (λ− α
m )2 ∈ [0,m].

So 〈rλ, a〉 ∈ [ 1m ,m + 1
m ]. But 〈rλ, a〉 ∈ Z and m > 1. So 〈rλ, a〉 ∈ [1,m]. It

follows that

ht(Rrλ(a)) = ht(a− 〈rλ, a〉rλ) = m− 〈rλ, a〉 ∈ [0,m− 1].

However there are no roots of height zero. So ht(Rrλ(a)) ∈ [1,m − 1]. This
proves part (a). Part (b) and (c) follows from part (a) by induction on the
height of a positive root.

21.6 Theorem (Conway). Let ρ be a Leech cusp in L. Assume the setup of
21.2. There is a unique Weyl chamber for R(L) around ρ, given by

C =
⋂

λ∈Λ

Dr⊥
λ
(ρ) = {x ∈ H25 : 〈x, rλ〉 < 0 for every Leech root rλ}.

Let cl(H25) be the union of H25 and the cusps of R(L) and ∂C = cl(C) \ C be
the boundary of C in cl(H25). One has a homeomorphism

f : ∂C → (Λ ⊗ R) ∪ {∞} given by (α;m,n) 7→ α/m.

The map f takes the Voronoi cell around a lattice vector λ ∈ Λ to the wall
r⊥λ ∩ ∂C and maps the cusps of C to the deep holes of Λ. The point ∞ maps to
the Leech cusp of ∂C.
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Proof. Since the mimimum norm of a non-zero vector in the Leech lattice is 4,
there is no root through ρ. Apply Vinberg’s algorithm with ρ as the controlling
vector. The Leech roots are the roots whose mirrors are closest to ρ so all these
mirrors are accepted. Let r = (α;m,n) be any root with m > 1. So 〈r, ρ〉 = −m.
Note that Dr⊥(ρ) = D(−r) and Dr⊥

λ
(ρ) = D(−rλ). So Dr⊥(ρ) and Dr⊥

λ
(ρ) are

opposite half spaces if and only if 0 ≤ 〈−r,−rλ〉 = 〈r, rλ〉. From lemma 21.3,
we have,

〈r, rλ〉 = m− m
2 (λ− α

m )2 + 1
m .

Since the Leech lattice has covering radius
√
2, there exists λ ∈ Λ such that

(λ − α
m )2 ≤ 2, hence there exists a Leech root rλ such that 〈r, rλ〉 ≥ 1/m > 0.

Hence Dr⊥(ρ) and Dr⊥
λ
(ρ) are not opposite. So the mirror r⊥ is rejected by the

algorithm.

21.7 Theorem (Borcherds). Let C be the Weyl chamber in 21.6. Let ∂C =
cl(C) \ C be the boundary of C in cl(H25). One has a homeomorphism

f : ∂C → (Λ ⊗ R) ∪ {∞} given by (α;m,n) 7→ α/m.

The map f takes the wall r⊥λ ∩ ∂C onto the Voronoi cell around a lattice vector
λ ∈ Λ and maps the cusps of C to the deep holes of Λ.

A deep hole v ∈ Λ corresponds to the cusp z = (v; 1, v2/2) ∈ ∂C. The mirror
of a Leech root rλ passes through z if and only if (λ − v)2 = 2, that is, λ is a
Leech vector closest to the deep hole v. The point ∞ corresponds to the Leech
cusp ρ ∈ ∂C. There are no mirrors through ρ.

Proof. Define g : Λ⊗ R → L⊗ R by

g(v) = (v; 1, v
2

2 + 1− d(v,Λ)2

2 ).

Since the Leech lattice has covering radius
√
2, we have g(v)2 = d(v,Λ)2−2 ≤ 0

and g(v)2 = 0 if and only if v is a deep hole of the Leech lattice. So g induces
a map ḡ : Λ ⊗ R → cl(H25) given by ḡ(v) = P(g(v)). For a Leech root rλ, one
computes

〈rλ, g(v)〉 = 1
2 (d(v,Λ)

2 − (v − λ)2).

So 〈rλ, g(v)〉 ≤ 0 for all Leech root rλ and 〈rλ, g(v)〉 = 0 if and only if v is in
the voronoi cell around λ. So the image of g is contained in ∂C and g takes the
voronoi cell around λ to the wall r⊥λ ∩ ∂C.

Next we verify that ḡ is the inverse of f . Clearly f ◦ ḡ = id. Conversely, take
a = (α;m,n) ∈ ∂C \ {ρ}. So α2 − 2mn = −1 and m > 0. For each µ ∈ Λ, we
have

0 ≥ 〈a, rµ〉 = m− m
2 (µ− α

m)2 + (−1)
2m .

Since a ∈ ∂C, there exists λ ∈ Λ such that a ∈ r⊥λ , so 〈a, rλ〉 = 0 which implies

m
2 (λ− α

m )2 = m+ (−1)
2m ≤ m

2 (µ− α
m )2 for all µ ∈ Λ.

73



Since m > 0, we find that α
m belongs to the Voronoi cell around λ, that is,

d( α
m ,Λ) = d( α

m , λ). It follows that

ḡ( α
m ) = P( α

m ; 1, 1
2 (

α
m )2 + 1− 1

2d(
α
m ,Λ)2) = P(α;m, α2

2m +m− m
2 (

α
m − λ)2).

Finally, note that

α2

2m +m− m
2 (

α
m − λ)2 = α2

2m + 1
2m = n.

This verifies ḡ(f(a)) = a and hence f : ∂C \ {ρ} → Λ ⊗ R and ḡ are mutual
inverses. Finally note that as v → ∞, g(v)/v2 → (0, 0, 1/2) so ḡ(v) → ρ. So ḡ
extends to (Λ⊗ R) ∪∞ by taking ∞ to the Leech cusp ρ of ∂C.

21.8 Corollary. Let C be the Weyl chamber in 21.6. Then ρ = (0; 0, 1) is the
unique Leech cusp in cl(C).

Proof. Let z = (v;m, ∗) represent a cusp in cl(C). If m = 0, then z2 = v2 = 0,
so v = 0 and since z is primitive, it follows that z = ρ. Now suppose m 6= 0.
Then z = (v;m, v2/2m). Under the isomorphism in 21.7, z corresponds to a
deep hole v/m of the Leech lattice and if λ is any Leech vector closest to this
deep hole, then the Leech mirror r⊥λ passes through z.

21.9 Definition (The Dynkin diagram at a cusp). Continue fixing a Leech
cusp ρ of L and let C be the unique Weyl chamber containing ρ. Let w be a
primitive positive norm 0 vector of L such that 〈w, rλ〉 ≤ 0 for all Leech root
rλ. Then w determines a cusp in the closure of C which we again denote by w.
Assume w⊥ contains a root. Then w⊥/wZ is a Niemeier lattice. This Niemeier
lattice has a rank 24 simply laced root system that is a disjoint union of ADE’s.
Let ∆w be the set of Leech roots whose mirrors pass through the cusp w:

∆w = Lr1(ρ) ∩ w⊥

If r, s are two distinct Leech roots in ∆w, then r⊥ ∩ s⊥ contains a null vector
w, so span{r, s} is either positive definite or singular. The inner product 〈r, s〉
is 0 or −1 in the first case and −2 in the second case. Consider the graph with
vertex set ∆w and a simple edge corresponding to pairs s, s′ ∈ ∆w such that
〈s, s′〉 = −1 and an edge marked by ∞ when 〈s, s′〉 = −2 (the ∞ is to remind us
that the reflections in these generate the infinite dihedral group). We call this
graph the Dynkin diagram at w and again denote it by ∆w. Note that the span
M of the roots in ∆w cannot be indefinite, because if it was then M⊥ would be
positive definite contradicting w ∈ M⊥.

Choose a primitive null vector w1 such that 〈w,w1〉 = −1. Let U = Zw+Zw1

and N = U⊥ ∩ L, so that L = N⊥U . One verifies that w⊥ = N + Zw and the
roots of w⊥ are

w⊥(2) = w⊥ ∩ L(2) = N(2) + Zw = H(2) + Zw = (H + Zw)(2).

Let H = spanZ N(2) be the sublattice spanned by the roots ofN . From [Venkov]
we know that the root system N(2) has full rank, that is, |N/H | < ∞.

74



21.10 Lemma. If a connected component of ∆w contains two vertices s, t joined
by an edge marked with ∞, then it is the affine diagram A1.

Proof. This is basically saying any diagram properly containing an affine A1 is
going to be indefinite, which cannot occur in ∆w More precisely, let s, t ∈ ∆w

such that 〈s, t〉 = −2. If possible suppose u ∈ ∆w be a node connected to
at least s or t. So 〈u, s〉, 〈u, t,∈〉{0,−1,−2} and at least of them is nonzero.
One verifies that gram(s, t, u) < 0, so span{s, t, u} contains both positive and
negative vectors and so has hyperbolic signature which implies span{s, t, u}⊥ is
positive definite, contradicting w ∈ { s, t, u}⊥.

21.11 Theorem. Assume the setup of 21.9.
(a) Each positive root of w⊥ is a non-negative integer linear combination of

∆w. In particular the Leech roots orthogonal w span w⊥.
(b) Each connected component of ∆w is an affine diagram.
(c) The Leech roots in any component of ∆w are linearly independent.
(d) Let X = {s0, s1, · · · , sk} be a connected component of ∆w and let

{n0, n1, · · · , nk} be the balanced numbering on X 2. Then n0s0+· · ·+nksk = w.
(e) Each component of the Dynkin diagram ∆w has the same coxeter number

h = −〈w, ρ〉
(f) The Dynkin diagram ∆w is the affine diagram of type w⊥/wZ. More

precisely, if the root system of w⊥/wZ is of type x1 ∪ x2 ∪ · · · where each xj ∈
{an, dn, e6, e7, e8}, then ∆w is the diagram X1 ∪X2 ∪ · · · where Xj is the affine
diagram corresponding to xj.

Proof. (a) By definition, H is spanned by its roots. So H + Zw is spanned by
its roots, i.e. the roots in w⊥. Let v be a positive root in w⊥. Then we can
write v =

∑

s∈Lr(ρ) nss with all ns ≥ 0. One has 0 = 〈w, v〉 = ∑

s∈Lr(ρ) ns〈w, s〉.
It follows that if 〈w, s〉 6= 0, then ns = 0.

(b) Let X,X ′, · · · be the connected components of ∆w. Claim 1 implies
H + Zw = Z∆w = ZX⊥ZX ′⊥ · · · . The roots of H + Zw are a disjoint union
(ZX)(2) ∪ (ZX ′)(2) ∪ · · · and the roots in each part are orthogonal to all the
other parts. If X was of finite type then ZX would a positive definite root
lattice with finitely many roots and this finite set of roots would be orthogonal
to all the other roots of H + Zw, which is impossible, since given any root v of
H + Zw, there are infinitely many distinct roots {v + nw : n ∈ Z} that are not
orthogonal to it. Since X is not a spherical diagram, X must contain an affine
diagram. If X properly contains an affine diagram, then ZX (and hence w⊥)
would contain a negative norm vector, which is not possible. So X must be an
affine diagram.

(c) Let X = {s0, · · · , sk} be a connected component of ∆w with balanced
numbering n0, · · · , nk. Assume that s0 is a level one vertex (also called an
extending node), that is, n0 = 1. Then {s1, · · · , sk} forms a simply laced finite
type Dynkin diagram. So Zs1 + · · · + Zsk is a positive definite lattice and
s1, · · · , sn are vectors lying in a half space of the Euclidean space Rs1 + · · · +

2Note that (1, 1) is a balanced numbering on the affine diagram of type A1.
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Rsk (determined by the condition 〈v, ρ〉 < 0) such that any two of them have
non-positive inner product. So {s1, · · · , sn} are linearly independent. Finally
∑n

j=0 njsj has norm 0, so it is linearly independent of {s1, · · · , sn}.
(d) Write u =

∑n
j=0 njsj . Then u is orthogonal to X and also orthogonal to

the roots in all the other components of ∆w. So u belongs to and is is orthogonal
to H + Zw. So u is a scalar multiple of w. On the other hand Some nj = 1
and the vectors s0, · · · , sn are linearly independent. So u is primitive. Hence
u = ±w. Finally note that u has positive height, since each sj has height 1 and
nj ’s are non-negative. So u = w.

(e) Part (d) implies 〈ρ, w〉 = ∑

j nj〈ρ, sj〉 = −∑

j nj . One knows that the
sum of the balanced numbering on an affine diagram is the Coxeter number of
the diagram.

(f) Write ∆w = X1 ∪X2 ∪ · · · , where X1, X2 are the connected components
of ∆w. Write Xj = {sj0, · · · , sjkj

} and let {nj
0 = 1, nj

1, · · · , nj
kj
} be the balanced

numbering on Xj . Let xj = {sj1, · · · , sjkj
} and δw = ∪jxj . As before δw is

linearly independent set and K = ⊕v∈δwZv is a positive definite simply laced
root lattice with Dynkin diagram ∆. Part (d) implies that each sj0 ∈ K + Zw.
So part (a) implies that K + Zw =

∑

v∈∆w
Zv = H + Zw. This forces K ≃ H .

Hence δw is a Dynkin diagram of H and hence ∆w is the affine diagram of type
w⊥.

We want to describe the environment of the easiest to describe deep hole
in the Leech lattice Λ, namely, the hole of type A24

1 and the corresponding
cusp of the Weyl chamber C. First we recall the following basic fact about
representation of elements of Λ/2Λ by “short vectors”. The terminology short
vectors here is borrowed from [CS] and means vectors of norm less than or equal
to 8.

21.12 Theorem (short vector representative in Leech). Each vector in Λ is
congruent modulo 2Λ to a short vector. The only congruences modulo 2Λ among
short vectors are the following:

(a) two short vectors of different lengths are not congruent modulo 2Λ.
(b) Two shorts vectors of norm 4 or norm 6 are congruent if and only if they

are equal up to a sign.
(c) The norm 8 vectors are partitioned into “orthogonal frames” of size 48

(i.e. an orthogonal basis for the underlying vector space and their negatives)
such that two norm 8 vectors are congruent modulo 2Λ if and only if they belong
to the same frame.

sketch of proof. The theta function θΛ(τ) = 1 + |Λ(4)|q2 + |Λ(6)|q3 + · · · is a
modular form of weight 12, so θΛ(τ) = aE12(τ) + b∆(τ) for some scalars a, b.
The first two q-coefficients of θΛ are 1 and 0 and this allows us to calculate a and
b. Thus the number of lattice vectors in any shell of the Leech lattice (in fact,
of any even positive self dual positive definite 24 dimensional Z lattice with no
roots) is determined. Suppose u, v are two short vectors such that u 6= ±v and
u ≡ v mod 2Λ. Then (u ± v) ∈ 2Λ− {0}, so 16± 2〈u, v〉 ≥ (u ± v)2 ≥ 16. This
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forces 〈u, v〉 = 0 and u2 = v2 = 8. This proves (a) and (b) and also that for a
norm 8 vector v, the set Λ(≤ 8) ∩ (v + 2Λ) has at most 48 elements (consisting
of a maximal orthogonal set and their negatives). So if there are N8 congruence
classes represented by norm 8 vectors, then N8 ≥ |Λ(8)|/48. So the number of
classes represented by short vectors is

1 + |Λ(4)|/2 + |Λ(6)|/2 +N8 ≥ 1 + |Λ(4)|/2 + |Λ(6)|/2 + |Λ(8)|/48

But the number on the right hand side turns out to be 224 = |Λ/2Λ|.

This theorem quickly implies that half of a norm 8 Leech vector λ in deep
hole of type A24

1 and the vertices of this deep hole correspond to the orthogonal
frame containing λ. More precisely we have the following:

21.13 Lemma. Let λ ∈ Λ(8). Then d(λ/2,Λ) ≥
√
2. So λ/2 is a deep hole.

By the short vector representative theorem we have the frame

Λ(≤ 8) ∩ (λ+ 2Λ) = {±λ1, · · · ,±λ24}

where {λ = λ1, · · · , λ24} is an orthogonal basis Λ ⊗ R consisting of of norm 8
vectors. Then the vertices of the hole λ/2 are the vectors (λ± λj)/2.

Proof. First note that λj ≡ λ mod 2λ, so (±λj + λ)/2 ∈ Λ for each j. Now,
let v ∈ Λ such that (v − λ/2)2 ≤ 2. Then (2v − λ) ∈ Λ(≤ 8) and (2v − λ) ≡
λ mod 2Λ. So from the short vector representation theorem, (2v − λ) = ±λj ,
so v = (λ ± λj)/2 for some j. This proves d(λ/2,Λ) ≥

√
2 and the only Leech

vectors at distance
√
2 from λ/2 are (λ± λj)/2.

21.14 Lemma. Suppose rλ, rµ are two Leech roots in ∆w such that 〈rλ, rµ〉 =
−2. Then w = rλ + rµ = (λ + µ; 2, ∗) and (λ + µ)/2 is a deep hole of Leech
lattice of type A24

1 . There are 48 Leech roots {rλj
,−rλj

+ w : j = 1, · · · , 24}
whose mirrors pass through w and they form an A24

1 Dynkin diagram. These 48
Leech roots correspond to an “orthogonal frame” of norm 8 vectors in the Leech
lattice representing a congruence class in Λ/2Λ.

Proof. From the calculation in lemma ??, we have 2− 1
2 (λ−µ)2 = 〈rλ, rµ〉 = −2,

so (λ−µ)2 = 8. So (λ−µ)/2 has norm 2, and hence does not belong to the Leech
lattice. It follows that (rλ + rµ) = (λ + µ; 2, ∗) is a primitive vector of L. The
inner products imply (rλ + rµ) and w are two orthogonal null vector. It follows
that (rλ + rµ) is a scalar multiple of w. Both are primitive vectors of L and has
negative inner product with ρ (since w ∈ cl(C)). So w = rλ + rµ. Conway’s
theorem implies α = 1

2 (λ+ µ) is a deep hole of Λ. Note that α− µ = (λ− µ)/2
is half of a norm 8 vector in the Leech Lattice, so it is a deep hole of type A24

1 .
So α is a deep hole of type A24

1 .

21.15 Remark. The lemma above says that one can have two Leech roots in ∆2

with inner product −2 if and only if the cusp is of type A24
1 . In all other cases,

the inner product between two distinct Leech roots in ∆w is 0 or −1, so the
affine Dynkin diagram at w is simply laced.
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Assume the setup of 21.9. To continue the discussion of the cusps of the
fundamental domain C begun in 21.9, first we need to show that there exists a
Leech glue root of type w, which means a Leech root v such that 〈v, w〉 = −1.

21.16 Lemma. (a) Let r be a root of L such that 〈r, w〉 = −1. Then there
exists a Leech glue root v of type w such that r − v ∈ spanZw

⊥(2).
(b) In particular, there exists a Leech glue root

Proof. (a) Using 21.5 we can write r = ǫ
∑

s∈Lr1(ρ)
css where each cs ∈ Z≥0 and

ǫ = ±1. So
−1 = 〈r, w〉 = ǫ

∑

s∈Lr1(ρ)

cs〈s, w〉.

It follows that ǫ = 1 and there exists a single Leech root v such that −〈v, w〉 =
cv = 1 and for all Leech root s 6= v, either cs = 0 or 〈s, w〉 = 0. This proves
part (a). (b) Part (b) follows from part (a) since there always exists a root r
such that 〈r, w〉 = −1. For example, we can take r = w1 − w where w1 is any
primitive null vector such that 〈w,w1〉 = −1.

21.17 Theorem (from Niemeier cusp to Leech cusp). (a) Assume the setup
of 21.9. Let u be a Leech glue root of type w. Then N = II25,1 ∩ w⊥ ∩ u⊥ is
a Niemeier Lattice of type w. Let ∆ be a connected component of ∆w and let
{nv : v ∈ ∆} be the balanced numbering of the affine diagram ∆. then there exists
a unique Leech root s ∈ ∆ of level 1 (meaning ns = 1) such that 〈u, s〉 = −1 and
〈u, s′〉 = 0 for all s′ ∈ ∆−{s}. In other words, u is connected to a unique level
one vertex of the affine diagram ∆. Further {v ∈ ∆w : 〈u,w〉 = 0} = ∆w ∩N is
a simple system for the the root system of N .

(b) Let −ρN be the Weyl vector for the simple system ∆w ∩ N . Then one
has ρ = ρN + hw1 + (h+ 1)w where w1 = (u+ w).

Proof. (a) Note that (u+w) is a null vector such that 〈u+w,w〉 = −1. So Since
Zw+Zu ≃ II1,1 the orthogonal compliment N is self-dual, hence is a Niemeier
lattice of type w (by definition).

Theorem 21.11 implies that w =
∑

s∈∆ nss. So

−1 = 〈u,w〉 =
∑

s∈∆

ns〈u, s〉.

Since each 〈w, s〉 ∈ Z≤0 and each ns ∈ Z>0, it follows that 〈u, s〉 = −1 for a
unique s ∈ ∆ such that ns = 1 and 〈u, s′〉 = 0 for all s′ ∈ ∆ − {s}. Removing
a level one vertex from an affine diagram gives the corresponding spherical
diagram. Since {v ∈ ∆w : 〈u,w〉 = 0} = ∆w∩N omits one level one vertex from
each connected component of ∆w, it is a union of the corresponding spherical
diagrams, hence it is the spherical diagram of type N . So the roots system
generated by (∆w ∩ N) is contained in the root system of N but is already is
root system of type N . So ∆w ∩N must be a simple system of for N .

(b) We have 〈ρ, w〉 = −h and hence 〈rho, w1〉 = 〈ρ, w + u〉 = −h − 1.
So ρ∗ = ρ + hw1 + (h + 1)w is orthogonal to w and w1. So ρ∗ ∈ N . Now
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〈ρ∗, s〉 = 〈ρ, s〉 = −1 for all s ∈ ∆w ∩ N . Since the root system of N has
full rank, these inner product conditions determine ρ∗. Specifically, ρ∗ must be
negative of the Weyl vector for the simple system of N .

21.18 Remark. Write w1 = u+ w. Then H = gram{w,w1} =
(

0 −1
−1 0

)

forms a

hyperbolic cell and N = H⊥ ∩L. Given v ∈ V , unique there exists vN ∈ N and
m,n ∈ Z such that v = vN + mw1 + nw. We write v = (vN ;m,n)N . This is
called the N⊥H coordinate system of L.

21.19 Lemma. Let N be a Niemeier lattice with roots. Identify L = N ⊕H
where H = span{z, z′} is a hyperbolic cell and z, z′ are cusps of type N with
〈z, z′〉 = −1.

(a) Then the action of R(L)z on a horoshpere around z is isomorphic to
action of AR(N) on N ⊗ R.

(b) Let ∆ be a connected component of Dynkin(N) and let ∆aff = ∆ ∪ {0}.
Let {si : i ∈ ∆} be a simple system for ∆, let smax,∆ be the highest root and let
s0 = −smax,∆ + z. So

∑

i∈∆aff nisi = z where {ni : i ∈ ∆aff} is the balanced

numbering on ∆aff . Then there exists a unique chamber C for R(L) such that
z ∈ cl(C) and the walls of C passing through z are the mirrors s⊥j as j varies

over ∆aff and as ∆ varies over the connected components of Dynkin(N).

Proof. (a) The mirrors of R(L) through z are the hyperplanes orthogonal to the
roots {r+nz : r ∈ ΦN , n ∈ Z}. Part (a) follows from the correspondence defined
in 19.2 using the map J : H25 → N once we observe that 〈r + nz, z′〉 = −n. So
the hyperplane (r+nz)⊥ (resp. reflection in (r+nz)⊥) corresponds under J to
the affine hyperplane H([r],−n) (resp. reflection in H([r],−n)).

(b) There is a chamber C0 of Aff(N) acting on N ⊗ R whose walls are
precisely H(sj , 0) with j ∈ ∆ and H(smax,∆, 1) as ∆ varies over the conencted
components of Dynkin(N). The results of section 19 imply that J−1(C0) is a
chamber for R(L)z and the walls of C0 correspond one to one with the walls
of J−1(C0) under the map J . By the calculation in part (a), we know that for
i ∈ ∆, the mirrors (si)

⊥ of R(L) corresponds to the affine hyperplane H(si, 0)
and the mirror s⊥0 = (smax−z)⊥ corresponds to the mirrorH(smax,∆, 1). So as ∆
varies over the connected components of Dynkin(N), the mirrors {s⊥i : i ∈ ∆aff}
form the walls of a chamber J−1(C0) for R(L)z. Applying Vinberg’s algorithm
with controlling vector z, we find that there is a unique chamber C of R(L)
contained in J−1(C0) containing z in its closure and the walls of C through z
are precisely the walls of J−1(C0).

21.20 Remark (Probably true and probably in Borcherds thesis in a similar form.
need to check details). The above lemma can be rephrased as follows: Let N be
a Niemeier lattice. Let w be a cusp of L of type N and let ∆0 be a set of roots
of L in w⊥ that form an affine Dynkin diagram of type N . Then there exists a
unique chamber C of R(L) satisfying the conditions that w is in the closure of
C and that the walls of C passing through w are precisely {s⊥ : s ∈ ∆0}. Let ρ
be the Leech cusp of C. We fix ρ and C and this defines Leech roots and Leech
glue roots of type w.
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21.21 Theorem (holy construction). Let (N,w,∆0, C, ρ) be as in the above
remark. Let u be a root such that 〈u,w〉 = −1 and that connects to an unique
level one vertex of each component of ∆0

3. Then u⊥ is a wall of C, that is,
u is actually a Leech glue root (need to check details for this statement). Let
w1 = (u + w), so that w2 = w2

1 = 0 and 〈w,w1〉 = −1. So L ∩ {w,w1}⊥ is
a Niemeier lattice of type N . Write N = L ∩ {w,w1}⊥. Then ∆ ∩ N is a
simple system for N . Let −ρN be the Weyl vector for this simple system. Then
ρ = ρN + hw1 + (h+ 1)w.

sketch of proof. We can apply Vinberg algorithm to construct the chamber C
starting with the controlling vector w and the initial set of mirrors {s⊥ : s ∈ ∆}
and the fundamental domain C0 = ∩{v ∈ H25 : 〈v, s〉 ≤ 0 for all s ∈ ∆0} for
the affine reflection groupR(L)w. Since 〈u,w〉 = −1, it is in the first shell around
w and while applying Vinberg’s algorithm, we can consider the mirror u⊥ right
after starting with the initial set of mirrors {s⊥ : s ∈ ∆0}. The inner products
between u and the simple roots in ∆0 are all non-positive, which implies that
for each s ∈ ∆0 the half space Ds⊥(C0) = {v : 〈v, s〉 ≤ 0} and the half space
Du⊥(w) = {v : 〈v, w〉 ≤ 0} are opposite half spaces since their they have normal
vectors −s and −u respectively. So the Vinberg’s algorithm accepts the mirror
u⊥ and hence it forms a wall of C. (need to verify the details up to here). The
rest of the proof is just reverse engineering the proof of 21.17.

The theorem gives the following method for constructing Leech cusps. Let
N be a Niemeier lattice. Find a primitive null vector w of L and a set of roots
∆ in w⊥ that form an affine Dynkin diagram of type N . Find a root u such
connects to a unique level one vertex of each component of ∆. Let −ρN be
the Weyl vector for the spherical simple system {v ∈ ∆: 〈v, u〉 = 0}. Then
ρ = ρN + h(u + w) + (h+ 1)w is a Leech cusp where h is the Coxeter number
of any component of N . Below we give a couple of examples of this.

For consistency with some computations in [CS], we change notation slightly
and choose coordinates for II25,1 so that it consists of all (x0, · · · , x24;x∞) such

that each xj is an integer or each (xj +1/2) is an integer and (x∞−∑24
j=0 xj) is

an even integer. We shall see below that the null vector ρ = (0, 1, 2, · · · , 24; 70)
defines a cusp of Leech type and we shal describe a cusp of type A24 and a cusp
of type D24 in the closure of the Weyl chamber containing ρ. Put another way,
this describes the environs of two deep holes of type A24 and D24 in the Leech
lattice.

21.22. Leech lattice from a cusp of type A24. Consider the cusp

w = (1/2, · · · , 1/2; 5/2).
Note that

r24 = e1 − e2, r0 = e2 − e3, r1 = e3 − e4, · · · , r22 = e24 − e25, r23 = e25 − e1.

3In other words, if ∆ is a connected component of ∆0 with balanced numbering {ns : s ∈
∆}, then there exists a unique vertex s0 ∈ ∆ such that ns0 = 1 and 〈s0, u〉 = −1 and 〈s, u〉 = 0
for all s ∈ ∆ − {s0}. Note that such an u exists, for example, choose any Leech glue root of
type w.
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are roots in w⊥ that forms an affine A24 diagram. To split a hyperbolic cell
containing w, find u ∈ L such that 〈u,w〉 = −1; for example u = −e1−e2. Then
w1 = u+(u2/2)w = u+w is a cusp of L and 〈w,w1〉 = −1, soH = spanZ{w,w1}
is an hyperbolic cell and {w,w1}⊥ = N is a Niemeier lattice of type A24. Let
sj = rj for j = 0, 1, · · · , 22, 24 and s23 = r23 + w. Then ∆N = {s1, · · · , s24}
forms an A24 diagram in {w,w1}⊥. So ∆N is a simple system for the root
system of N . The Weyl vector for ∆N is

−ρN =

12
∑

j=1

1
2j(25− j)(sj + s25−j).

It follows that ρN + 25z1 + 26z is a Leech cusp. One computes

ρN + 25z1 + 26z = ρ = (0, 1, 2, · · · , 24; 70).

21.23. Leech lattice from a cusp of type D24. Consider the cusp

w = e25 + e26 = (0, · · · , 0, 1; 1).

Note that

r2 = e2 − e3, · · · , r23 = e23 − e24, r24 = e23 + e24, r25 = e1 − e2, r1 = −e1 − e2,

are roots in w⊥ that forms an affine D24 diagram. To split a hyperbolic cell
containing w, find u ∈ L such that 〈u,w〉 = −1 and that attaches to a level
one vertex of the D24 diagram; for example u = 1

2 (−1, 1, 1, · · · , 1, 3; 5). Then
w1 = u + w is a cusp of L and 〈w,w1〉 = −1, so H = spanZ{w,w1} is an
hyperbolic cell and {w,w1}⊥ = N is a Niemeier lattice of type D24. Let sj = rj
for j = 1, 2, · · · , 23, 25 and s24 = r24 + w. Then ∆N = {s1, · · · , s24} forms an
D24 diagram in {w,w1}⊥. The Weyl vector for ∆N is

−ρN = 24·23
4 (s23 + s24) +

22
∑

j=1

(

24i− i(i+1)
2

)

si

It follows that ρN + 46z1 + 47z is a Leech cusp. One computes

ρN + 46z1 + 47z = ρ = (0, 1, 2, · · · , 24; 70).
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21.24 Theorem. Let N be a Niemeier lattice with roots. Let z ∈ cl(C) be a
cusp of type N . Let Φ1,z be the set of Leech roots whose mirrors pass through
z. Then one can identify z⊥ with N + zZ such that

Φ1,z = {sj0 + z, sj1, · · · , sjnj
: j = 1, · · · , r}

where {s11, · · · , s1n1
}, · · · , {sr1, · · · , srnr

} are simple systems for the irreducible
components of the root system of N and s10, · · · , sr0 are the corresponding lowest
roots. Thus Φ1,z forms the affine Dynkin diagram of N .

In particular, if v1, · · · , vk are the Leech roots corresponding to a component
of the affine Dynkin diagram of N and c1, · · · , ck are the balanced numbering of
this affine Dynkin diagram, then

∑

j cjvj = z.

Proof. Recall: z is a cusp of type N means z is a a primitive null vector of L
such that 〈z, ρ〉 < 0 and z⊥/z ≃ N . Further, 〈z, x〉 < 0 for all x ∈ H25.

Let Cz be the chamber of R(L)z containing C (hence ρ ∈ cl(Cz)). Lemma
14.6 implies that Wall(Cz) = {r⊥ : r ∈ Φ1,z}. Since ρ ∈ cl(Cz) and there is
no mirror through ρ, for each Leech root r, we have Dr⊥(Cz) = Dr⊥(ρ) =
{x ∈ : 〈x, r〉 < 0}. So

Cz = ∩r∈Φ1,z
{x ∈ H25 : 〈x, r〉 < 0}.

Choose z′ such that 〈z, z′〉 = −1. The choice of z′ gives us a map J : H25 →
z⊥/z (see 19.1) which sets up an isomorphism between the permutation actions
of R(L)z on a horosphere around z and the permutation action of AR(N) on
(z⊥/z)⊗ R. It follows that J(Cz) is chamber of AR(N) and its walls are

{J(r⊥) : r ∈ Φ1,z} = {H([r], 〈r, z′〉) : r ∈ Φ1,z}.

(Recall: [ ] denotes going modulo the span of z). Note that the in the choice of
z′ and the corresponding choice of J we have a freedom of adding an element
of z⊥. So by changing z′ by an element of z⊥ we can choose the map J so that
J(Cz) is a chamber of AR(N) which contains 0 in its closure. If r ∈ Φ1,z and
x ∈ H25, then

〈[r], J(x)〉 = 〈r, x〉〈x, z〉−1 + 〈r, z′〉
Since 〈x, z〉 < 0, one has

J(Cz) = ∩r∈Φ1,z
{u ∈ z⊥/z : 〈r, u〉 > 〈r, z′〉}.

On the other hand, since J(Cz) is a chamber of AR(N) containing 0 in its
closure, we know that there is a simple system for {z, z′}⊥ with components
sj1, · · · , sjnj

for j = 1, · · · , r such that

J(Cz) = ∩r
j=1({u : 〈u, [−sj0]〉 < 1} ∩ {u : 〈u, [sj1]〉 > 0} ∩ · · · ∩ {u : 〈u, sjnj

〉 > 0}).

where sj0 is the lowest root in {z, z′}⊥ for the component sj1, · · · , sjnj
. Observe

that if r and s are roots such that {u : 〈r, u〉 > 0} = {u : 〈s, u〉 > 0}, then r = s.
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Compare the two expressions for J(Cz). All the half spaces appearing in the
two expressions are essential, that is, each of these half spaces bound a wall of
J(Cz). So the half spaces must be in bijection. Let r ∈ Φ1,z such that

{u : 〈r, u〉 > 〈r, z′〉} = {u : 〈u, sji 〉 > 0} for some i = 1, · · · , nj .

Then [r] = [sji ] and 〈sji , z′〉 = 0, so r = sji . Finally let r ∈ Φ1,z be the root such
that

{u : 〈r, u〉 > 〈r, z′〉} = {u : 〈sj0, u〉 > −1}.
Then r = sj0 + λz for some λ ∈ Z and −1 = 〈r, z′〉 = 〈sj0 + λz, z′〉 = −λ. So

r = sj0 + z. It follows that

Φ1,z = {sj0 + z, sj1, · · · , sjnj
: j = 1, · · · , r}.

21.25 Corollary. Consider the setup of 21.24. Let h be the Coxeter number of
an irreducible component of N . Then 〈ρ, z〉 = −h and ρ = ρN + hz′ + (h+ 1)z
where −ρN is the Weyl vector for the simple system {sj1, · · · , sjnj

: j = 1, · · · r}.

Proof. Let rj0 = sj0 + z, rj1 = sj1, · · · , rjnj
= sjnj

. Let {1 = c0, c1 · · · , cnj
} be

the balanced numbering on the affine dynkin diagram {sj0, · · · , sjnj
}. Then

∑

i cir
j
i = z. Since each rji is a Leech root, it follows that

〈z, ρ〉 = −
∑

i

ci = −h.

Let ρN = ρ − hz′ + 〈ρ, z′〉z. Then ρN ∈ L ∩ {z, z′}⊥ = N and 〈ρN , sji 〉 = −1
for i = 1, · · · , nj , j = 1, · · · , r. So −ρN is the Weyl vector for the simple system

{sj1, · · · , sjnj
: j = 1, · · · r} of N . One knows that ρ2N = 2h(h+1). It follows that

〈ρ, z′〉 = −(h+ 1).

Choose coordinates for II25,1 so that it consists of all (x0, · · · , x24;x∞) such

that each xj is an integer or each (xj + 1/2) is an integer and (x∞ −∑24
j=0 xj)

is an even integer. The null vector ρ = (0, 1, 2, · · · , 24; 70) defines a cusp of
Leech type. Below we describe a cusp of type A24 and a cusp of type D24 in the
closure of the Weyl chamber containing ρ.This gives two examples of the Holy
construction of Leech lattice. Put another way, this describes the environs of
two deep holes of type A24 and D24 in the Leech lattice.

21.26. Leech lattice from a cusp of type A24 Consider the cusp w =
(1/2, · · · , 1/2; 5/2). Note that

r24 = e1 − e2, r0 = e2 − e3, r1 = e3 − e4, · · · , r22 = e24 − e25, r23 = e25 − e1.

are roots in w⊥ that forms an affine A24 diagram. To split a hyperbolic cell
containing w, find u ∈ L such that 〈u,w〉 = −1; for example u = −e1−e2. Then
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w1 = u+(u2/2)w = u+w is a cusp of L and 〈w,w1〉 = −1, soH = spanZ{w,w1}
is an hyperbolic cell and {w,w1}⊥ = N is a Niemeier lattice of type A24. Let
sj = rj for j = 0, 1, · · · , 22, 24 and s23 = r23 + z. Then ∆N = {s1, · · · , s24}
forms an A24 diagram in {w,w1}⊥. So ∆N is a simple system for the root

system of N . Note that (s0 − z) = −∑24
j=1 sj is the lowest root of the simple

system ∆N . It follows that there is a unique chamber C of R(L) such that
z ∈ cl(C) and and such that s⊥0 , · · · , s⊥24 are precisely the walls of C that pass
through z.

The Weyl vector for ∆N is −ρN =
∑12

j=1
1
2j(25 − j)(sj + s25−j). So the

Leech cusp of C is ρ = ρN + 25z1 + 26z = (0, 1, 2, · · · , 24; 70).
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22 The
√
−3-modular Eisenstein lattice of signa-

ture (13, 1)
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