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1.1. Definition. Let V be a finite dimensional real (or complex) vector space. If V has a symmetric bilinear
(or hemitian) form 〈 , 〉, then the linear automorphisms of this inner product space is denoted by O(V ).
In the real case, g ∈ O(V ) is called reflection if it fixes a hyperplane and in the orthogonal complement
multiplies by −1. An the complex case element g ∈ O(V ) is called a complex reflection (of order n) if it fixes
a hyperplane and in the orthogonal complement multiplies by some primitive n-th root of unity. If v ∈ V ,
we write v2 = 〈v, v〉 and call it norm of v. Let v ∈ V with v2 6= 0. Define Rv ∈ O(V ) by

Rξ
v(w) = w − (1− ξ)〈w, v〉v/v2.

Then Rξ
v is a complex reflection in v that fixes v⊥ (called mirror of the reflection) and takes v to ξv. We say

Rξ
v is a (complex) reflection in v. When ξ = −1, we just write Rv = Rξ

v.

1.2. Let V ≃ Cn. An element g ⊆ GL(V ) is called a pseudo-reflection (of order d) if its matrix in some
basis is diag(ξ, 1, 1, · · · , 1) for some (d-th) root of unity ξ 6= 1. If G is a finite subgroup GL(V ) generated by
pseudo-reflections, then similarly there exists a G invariant positive definite hermitian form on V (just take
any form and average over G). So we may assume G ⊆ O(V ) ≃ U(n) and the pseudo reflections in G acts
by complex reflections.

1.3. Finite real reflection groups: Let ∆ be among the diagrams An, Dn, E6, E7, E8 having n vertices.
Let L(∆) ≃ Zn be the even integral Z-lattice with basis {sj : j ∈ ∆} (as usual, here j ∈ ∆ means j is in the
vertex set of ∆) and inner product defined by

◦ s2j = 〈sj , sj〉 = 2 for all j ∈ ∆,
◦ 〈sj , sk〉 = −1 if (j, k) ∈ edge(∆) and 〈sj , sk〉 = 0 otherwise.

This inner product is positive definite. Let Rj denote the reflection in sj . Let hR = L(∆)⊗R. Let Rj = Rsj

denote the reflection in sj . Let W (∆) be the subgroup of O(hR) ≃ O(n) generated by the Rj ’s. The group
W (∆) has a nice presentation that can be read off from ∆.

Define Cox(∆,∞) to be the group with generators {rj : j ∈ ∆} and relations rjrkrj = rkrjrk if (j, k) ∈
edge(∆) and rjrk = rkrj otherwise. Let Cox(∆, n) be the quotient of Cox(∆,∞) by the relations r2j = 1 for
all j. Then W (∆) has the presentation

W (∆) ≃ Cox(∆, 2)

where the reflections Rj ∈W (∆) correspond to the generators rj in Cox(∆, 2).

1.4. Remark.

◦ The W (∆)’s are important examples of reflection groups. You can make reflection groups from each
finite type Dynkin diagram in similar manner and in fact these are almost all the irreducible finite
reflection groups with some exceptions in dimension 2 (the dihedral groups) and 3, 4 (coming from
the symmetries of platonic solids).

◦ W (∆)’s asise in study of complex simple Lie algebras and their representations. For each finite type
Dynkin diagram ∆, there is a complex simple Lie algebra and W (∆) is its Weyl group.

1.5. Simply laced root lattices and their reflection groups: An integral Z-lattice L is a free abelian
group L ≃ Zn with a Z-valued nondegenerate bilinear form. Say that L is even all lattice vectors have even
norm. A simply laced root lattice L is an even integral positive definite Z-lattice generated by its norm 2
vectors. The norm 2 vectors are called roots of L because reflections in these vectors take L to itself. The
reflection group of L, denoted R(L) is by definition the subgroup of Aut(L) generated by reflections in the
roots of L.

1.6. Theorem. Suppose L is indecomposible, positive definite integral Z-lattice, v2 ∈ 2Z for all v ∈ L and
L is generated by norm 2 vectors. Then L ≃ L(∆)’s for ∆ ∈ {An, Dn, E6, E7, E8}. One has R(L(∆)) =
W (∆) = Cox(∆, 2). Here L is indecomposible means it cannot be a orthogonal direct some of smaller ones.

1.7. How to recover the Dynkin diagram ∆ from the reflection group R(L(∆)):

◦ Choose a random hyperplane in V .
◦ Let ρ (called the Weyl vector) be the half sum of the roots on one side of this hyperplane.
◦ Choose the mirrors M1, · · · ,Mn that are closest to Rρ in the spherical norm on S1(hR).
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◦ The mirrors M1, · · · ,Mn forms correspond to the vertices of the Dynkin diagram.

1.8. Examples of finite complex reflection groups: Each finite real reflection group is also a finite
complex reflection group (just complexify the vector space) and extend the form as a hermitian form.
The finite complex reflection groups were classified in the 1950’s by Shephard and Todd. There is one
infinite family G(de, e, r) (which includes all the real infinite families: for example G(1, 1, n+ 1) ≃ W (An),
G(2, 2, n) = W (Dn), etc) and there are 34 exceptional ones. Some of these arise as reflection groups of
“complex lattices”. We give some examples below:

1.9. Eisenstein root lattices: Let ω = e2πi/3 and E = Z[ω] be the ring of Eisenstein integers. Define
Ln = LE(An) to be the free E-module with basis {sj : j = 1, · · · , n} and a hermitian form defined by s2j = 3,

〈sj , sj+1〉 =
√
−3 for all j and 〈sj , sk〉 = 0 if k > j + 1. Then

◦ Ln has minimal norm 3.
◦ Reflection in each norm 3 vector of L takes L to itself. These are the “roots” of L and the order 3

complex reflection in these roots generate the complex reflection group R(L) of L.
◦ Ln is positive definite if and only if n ≤ 4, so R(Ln) is a finite complex reflection group for n ≤ 4.

The underlying Z-lattices are L(A2), L(D4), L(E6), L(E8).

Some other examples come from reflection groups of other interesting lattices, e.g. the complex reflection
group of the Gaussian D4 lattice (rank 4 over Z) or the Eisenstein Coxeter-Todd lattice (rank 12 over Z).

1.10. Theorem. Suppose L is indecomposible, positive definite, integral Z-lattice, 〈v, w〉 ∈
√
−3E for all

v, w ∈ L, and L is generated by norm 3 vectors. Then L ≃ L(An) for 1 ≤ n ≤ 4. Further R(L(An)) ≃
Cox(An, 3) for 1 ≤ n ≤ 4.

The class of complex reflection groups form an interesting and natural collection of linear groups from the
point of view of invariant theory. Let V be a n dimensional complex vector space. Let G be a finite subgroup
of GL(V ). Let S = Sym(V ∗) ≃ C[t1, · · · , tn] and R = SG (the ring of G-invariant polynomial functions).

1.11. Theorem (Chevalley-Shephard-Todd). R ≃ C[s1, · · · , sn] if and only if G is a finite complex reflection
group.

1.12. Exercise: Work out The A2 example.

1.13. Diagrams for complex reflection groups: For each finite complex reflection group W ⊆ O(V ),
Coxeter Wrote down Dynkin Type diagrams ∆. For example A4 is the diagram for R(L4) with 3 written
at each vertex. The vertices of ∆ form a minimal set of complex reflection generators fo W and the edges
indicate relations. Lot of nontrivial properties of W can be read off from ∆: for example “the invariant
degrees of W” and the homotopy type of (V − {mirrors of W )/W (called the braid space of W ). However,
the definition of ∆ is case by case and ad-hoc.

1.14. An attempt to characterize the complex coxeter diagrams: Let W ⊆ O(V ) ≃ O(n) be the

complex reflection group and Φ be the set of roots of W . Define α : P (V ) → V by α(w) =
∑

r∈Φ
〈r,w〉
|〈r,w〉|r.

Notice that if W was a real reflection group, then the Weyl vector ρ is a fixed point of α (up to scalars). This
suggests the following algorithm: Start with a random w0 ∈ V and generate wm’s by wm = α(wm−1). If the
sequence converges, let w = limwm. Let (M1, · · · ,Mn) be the mirrors closest to w. Make a diagram whose
vertices correspond to M1, · · · ,Mn and edges indicate the relations between the reflections in these mirrors.

Suppose the roots of W can be chosen to span a lattice defined over Z or ring of integers of a imaginary
quadratic extension of Q. Then experimentally the above algorithm converges and seems to give the “right
diagram”. In five exceptional cases, including some where the known diagrams are known to behave badly,
this algorithm produces new diagrams.

Define S(w) =
∑

r∈Φ|〈r, w〉|/|w|. Then one can show that S does not have a local maxima on the mirrors
of W and further ∂wS = 0 if and only if w is a fixed point of α. Since S attains its maxima on P(V ), it
follows that α has a fixed point.

Some reference: Humphreys: Reflection groups and Coxeter groups. Broue: Introduction to complex
reflection groups and their braid groups. Bourbaki: Lie groups and Lie algebras, chapter 4 - 6.
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2. The A2 singluarity

2.1. Commutative algebra preliminaries. Let G be a group acting on a commutative ring R. Say that
φ of R is G-invariant if gφ = φ for all g ∈ G. Let RG denote the subgring of all G-invariant elements in R.

2.1. Lemma. Let I be an ideal in R that is (setwise) fixed by G. Then the G action on R induces a
G action on R/I such that the projection (R → R/I) is G-equivariant and we have a natural injection
j : RG/(RG ∩ I) →֒ (R/I)G given by j(φ + RG ∩ I) = (φ + I) for all φ ∈ RG. If G is finite and |G| is
invertible in R, then j is an isomorphism.

Proof. Let j : RG → R/I be the composition (RG →֒ R → R/I) Then ker(j) = RG ∩ I. So j induces an
injection RG/RG ∩ I → R/I. On the other hand if φ ∈ R is G-invariant then j(φ) = φ + I is G-invariant
in R/I, that is, j(RG) ⊆ (R/I)G. It follows that j induces an injection j : RG/RG ∩ I → (R/I)G given by
j(φ+RG ∩ I) = φ+ I.

Now suppose G is finite and |G| is invertible in R. Define the function av : R → RG by av(φ) =
|G|−1

∑
g∈G gφ (Caution: that π need not be a ring homomorphism but only an additive group homo-

morphism). Given an element (φ + I) ∈ (R/I)G, choose a representative for it in R, call it φ. Then
gφ+ I = g(φ+ I) = φ+ I for all g ∈ G and hence

av(φ) + I = φ+ I for all (φ+ I) ∈ (R/I)G. (1)

The composition (RG →֒ R
π−→ RG) is identity. Note that av(I) = I ∩ RG, so I is in the kernel of the

composition (R
av−→ RG → RG/RG ∩ I). Therefore, we obtain an abelian group homomorphism R/I →

RG/I ∩ RG, and hence an abelian group homomorphism κ : (R/I)G → RG/(I ∩ RG) given by κ(φ + I) =
av(φ) + I ∩RG. Using (1), we obtain j(κ(φ+ I)) = j(av(φ) + I ∩RG) = av(φ) + I = φ+ I. So j is onto. �

One verifies that κ ◦ j is identity, so κ is the inverse of j, in particular κ preserves multiplication. One
can also check this directly using (1).

2.2. Lemma. Assume G is finite and |G| is invertible in R. Let φ ∈ RG. Then the φR ∩RG = φRG.

Proof. An element α ∈ φR ∩RG has the form α = φψ for some ψ in R. Acting by g ∈ G, we get α = φg(ψ)
since α and ψ are G-invariant. It follows that α = φ av(ψ) ∈ φRG. �

2.2. Schmes and functors of points. Let R be a Noetherian commutative ring.

2.3. Affine R-schemes of finite type: Let Aff.SchR denotes the category of affine R-schemes. The
cateogy of R-algebras are equivalent to the category Aff.SchopR and this sets up an equivalence between
between the full subcategory of finitely generated R-algebras and the full subcategory of R-schemes of finite
type 1. Note that a finitely generate R-algebra has the form R[t]/I where R[t] denotes the polynomial ring
in n variables t = (t1, · · · , tn) and I is an ideal in R[t].

An R-algebra A corresponds to the scheme spec(A); this is a topological space with a sheaf of rings on it
called the structure sheaf of spec(A). As a topological space spec(A) consists of the set of prime ideals of A
with the Zariski topology whose closed sets are the sets of the form V (I) = {P ∈ spec(A) : I ⊆ P} for some
ideal I ⊆ A. Saying that spec(A) is an R-scheme means that spec(A) comes with a distinguished map to
spec(R); this corresponds to the ring homomorphism R → A that makes A into an R-algebra. Given a finite
type affine R-scheme X , let OX denote the structure sheaf and OX(X) = O(X) denote the ring of functions
on X . Then one has X ≃ spec(O(X)). For a finitely generated R-algebra A, one has O(spec(A)) = A. Thus
the functors spec( ) and O( ) sets up the equivalence between the categories of finite type affine R-schemes
and finitely generated R-algebras.

The Zariski topology on spec(A) is almost never Hausdorff, since the closure of P ∈ spec(A) is V (Q) =
{Q ∈ spec(A) : P ⊆ Q}. The set of closed points of spec(A) is thus the set of maximal ideals of A. This set
will be denoted by max(A). Let An

R = spec(R[t]) denote the affine n-space.

2.4. The functor of points: Let X be an affine R-scheme and let A be an R-algebra. Define

X(A) = HomAlgR
(O(X), A) = Hom(spec(A), X).

1Reason for assuming R is Noetherian: if we do not make this assumption, the finitely generated R-algebras may not form a

full subcategory and we do not want to deal with this issue.
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One says that X(A) is the set of A-valued points of X (or A-points of X).
In general, an R-scheme X gives the representable functor X(·) : Sch

op
R → set, defined by X(·) =

Hom(·, X). This way, we obtain an embedding of SchR into the presheaf category Fun(SchopR , set). Iden-
tify SchR ⊆ Fun(SchopR , set) via this Yoneda embedding. This gives a natural way to enlarge the cate-
gory of schemes (to stacks for example); by considering suitable subcategories S such that Sch

op
R ⊆ S ⊆

Fun(SchopR , set). This consideration is at the heart of Grothendieck’s philosophy of thinking of objects in a
category in terms of the functors they represent.

When we are working over C the formalism of affine schemes is related to with classical complex geometry
of the 19th century through the functor of points using the nullstellensatz. We want to explain this and in
particular spell it out for the affine space. For the rest of this subsection, let k be an algebraically closed
field of characteristic zero.

2.5. Lemma. Let X be a finite type affine k-scheme. Then there is a natural bijection X(k) ≃ max(O(X)).
In other words, the k-points of X can be identified with the set of (Zariski) closed points of X.

Proof. This lemma can be called one form of Hilbert’s nullstellensatz. By nullstellensatz, we have a bijection
kn ≃ max(k[t]) given by (a1, · · · , an) 7→ (t1 − a1, · · · , tn − an).

Let X be a finite type affine k-scheme. Write A = O(X). We can identify A with k[t1, · · · , tn]/I for
some ideal I. Let π : k[t] → A be the natural projection; this corresponds to an inclusion X ⊆ An

k . If m
is a maximal ideal in A, then π−1(m) is a maximal ideal in k[t] and this sets up a bijection between the
closed points of X and the closed points of An

k contained in V (I). In particular, by nullstellensatz, we have
A/m ≃ k[t]/π−1(m) ≃ k. Thus, given maximal ideal m ∈ max(A), we get an element of φ ∈ X(k) defined as
the natural projection φ : A→ A/m ≃ k. Conversely φ ∈ X(k) determines the maximal ideal ker(φ). These
set up mutually inverse bijections between max(A) and X(k). �

2.6. Example: The nullstellensatz and the above lemma gives us the following one to one correspondences:

kn ≃ An(k).

An element a ∈ kn corresponds to the evaluation homomorphism eva ∈ An(k), defined by eva(f) = f(a);
note that ker(eva) = (t1−a1, · · · , tn−an). Conversely φ ∈ An(k) corresponds to a = (φ(t1), · · · , φ(tn)) ∈ kn.
Since φ : k[t] → k is a ring homomorphism, one has φ(f(t1, · · · , tn)) = f(φ(t1), · · · , φ(tn)) = f(a); that is
φ = eva.

Next we describe how morphisms between affine spaces An
k and Am

k correspond to polynomal maps
between k-vector spaces An(k) and Am(k). Let F1, · · · , Fm ∈ k[t]. A function kn → km of the form
t 7→ (F1(t), · · · , Fm(t)) is called a polynomial map.

2.7. Lemma. There is a natural bijection between HomSchk(A
n
k ,A

m
k ) and the set of polynomial maps from

kn to km.

Proof. Giving a morphism π : An
k → Am

k is equivalent to giving a ring homomorphism π∗ : k[s] → k[t] where
s = (s1, · · · , sm) and we have identified O(Am

k ) with k[s]. Such a morphism π∗ determines and is determined
by m polynomials e1(t), · · · , em(t) ∈ k[t] where ej(t) = π∗(sj). Thus π determines a polynomial map t 7→
(e1(t), · · · , en(t)) and conversely this polynomial map determines π∗ via the formula π∗(f(s1, · · · , sm)) =
f(e1(t), · · · , em(t)).

Let us see more explicitly a morphism of k-schemes π : An
k → Am

k determines the map of vectors spaces
kn → km. Pick a ∈ kn. This corresponds to the element eva ∈ An(k). The morphism π(k) : An(k) → Am(k)
takes eva to eva ◦ π∗ ∈ Am(k). For f ∈ k[s], we have

eva ◦ π∗(f) = evaf(e1(t), · · · , em(t)) = f(e1(a), · · · , em(a)).

In other words π(k)(eva) = ev(e1(a),··· ,em(a)) ∈ Am(k) and this corresponds to the point (e1(a), · · · , em(a)) ∈
km. Thus π corresponds to the polynomial map a 7→ (e1(a), · · · , em(a)). �
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2.3. The permutation group of 3 letters.

2.8. The invariants: Let O = C[t1, t2, t3]/〈t1 + t2 + t3〉 ≃ C[t2, t3] and h = spec(O) ≃ A2
C
. Consider

the action of G = S3 on the two dimensional complex vector space h(C) = {(t1, t2, t3) ∈ C3 :
∑

i ti = 0}
by co-ordinate permutations, here h(C) denotes the set of C-points of h. We want to compute h(C)/G :=
spec(OG)(C). Let R = C[t1, t2, t3]. Let e1(t) = (t1 + t2 + t3), e2(t) = (t1t2 + t1t3 + t2t3) and e3(t) = t1t2t3
be the elementary symmetric functions. By the fundamental theorem of symmetric functions, we know that
RG = C[e1(t), e2(t), e3(t)] ≃ C[s1, s2, s3], a 3 variable polynomial ring in indeterminates s1, s2, s3, with the
isomorphism given by sj 7→ ej(t). Since the G-action on S is induced from the G-action on R, lemma 2.1
implies

OG = (R/〈e1〉)G = RG/〈e1(t)〉 ∩RG ≃ C[s1, s2, s3]/〈s1〉 ≃ C[s2, s3].

So h/G := spec(OG) ≃ A2
C
with co-ordinates s2, s3. The natural inclusion OG →֒ O is given by (s2, s3) 7→

(σ2(t), σ3(t)) and this corresponds to the quotient map π : h(C) → (h/G)(C). In co-ordinates, this map is
given by π(t) = (σ2(t), σ3(t)) for t ∈ h(C).

2.9. The discriminant polynomial: Let t1, t2, t3 be such that
∑

i ti = 0. Let ∆ =
∏

i<j(ti − tj)
2

be the discriminant of the cubic polynomial F (x) =
∏

i(x − ti) = x3 + e2(t)x − e3(t). Note that ∆ is a
symmetric polynomial, so it can be written as a polynomial in e2 and e3. The following is one way to find
this polynomial by direct computation: Differentiating the identity

∏
i(x− ti) = x3+e2x−e3 with respect to

x, we get
∑

i<j(x− ti)(x− tj) = 3x2 + e2. Substituting x = ti and multiplying the three equations together
we get

−∆ =
∏

i
(3t2i + e2) = 27

∏
i
t2i + 9e2

∑
i<j

t2i t
2
j + 3e22

∑
i
t2i + σ3

2 = 27e23 + 4e32,

where the last equality follows by noting
∑

i<j t
2
i t

2
j = e22 and

∑
t2i = −2e2 and these follow easily from∑

i ti = 0.

2.10. The discriminant subvariety Write d(s2, s3) = 4s32 + 27s23. By the above calculation one has
−∆(t1, t2, t3) = d(e2(t), e3(t)). So the inclusion C[s2, s3] →֒ O takes −d to ∆ and hence kernel of the
composition (C[s2, s3] →֒ O → O/∆) is generated by d (by lemma 2.2). So we have a commutative rectangle
note that

C[s2, s3]
� � //

����

O

����
C[s2, s3]/d

� � // O/∆

corresponding to the commutative square h/G hoooo

{d = 0}
?�

OO

{∆ = 0}oooo
?�

OO

So {d = 0} is the image of {∆ = 0} under the quotient map. Here we use the informal notation : {d = 0} =
spec(C[s2, s3]/d).

By using the polynomial map on the complex points, we can directly check on the level of point sets that
the set theoretic image of the the complex points of the subscheme {∆ = 0} under the quotient map is the
set of complex points of the subscheme {d = 0} as follows: Consider the subset M = {(x1, x2, x3) ∈ h : x1 =
x2} = {(u, u,−2u) : u ∈ C}. Then

π(M) = {(−3u2,−2u3) : u ∈ C} = {(s2, s3) ∈ C2 : 4s32 + 27s23 = 0}.
Similarly the image of the other mirrors {xi = xj} turn out to be the same set.

The image of the real part of the Cartan: The complex vector space h(C) has a distinguished real
subspace h(R) = {t ∈ R3 : t1 + t2 + t3 = 0}. We want to compute the image of h(R) under the quotient map
π : h(C) → (h/S3)(C). Recall that we have identified (h/S3)(C) with C2 so that π becomes the polynomial
map π(t) = (e2(t), e3(t)). Note that even though we started working over C, the quotient (h/S3) turns out
to be an affine space which is defined over Z. So it makes sense to talk of its real points; which is just
spec(R[s2, s3])(R sitting inside spec(C[s2, s3])(C). We use the cumbersome notation spec(C[s2, s3])(C) in
place of C2 because, we want to remember that s2, s3 are the names for the co-ordinate functions on this
C2.

2.11. Lemma. One has π(h(R)) = c = {(s2, s3) : 27s23 + 4s32 ≤ 0}. If C is a Weyl chamber in h(R), then
π|C : C → c is an isomorphism.
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h(R) = {t = (t1, t2, t3) ∈ R
3 :

∑

j tj = 0}

p2p1 (0, 1,−1)(1,−1, 0)

π = π(R)

t 7→
(

∑

i<j

titj ,
∏

i

ti

)

“real points of h/S3” = spec(R[s2, s3])(R) = R
2

s2

s3

π(p1)

π(p2)

Figure 1. Visualizing the projection map π on the set of real points. Suppose a point p
goes around the grey circle S on the left once starting at p1. Then its image π(p) traverses
the grey vertial straight line segment π(S) six times, going down from π(p1) to π(p2) thrice
and going back up to π(p1) thrice. The arc of the circle that lies in a Weyl chamber maps
bijectively to π(S).

Proof. We have the identity 4e32 = −27e23 −
∏

i<j(ti − tj)
2. The right hand side is negative if t1, t2, t3 are

real numbers. So we must have e2 ∈ (−∞, 0]. Fix e2 at a negative number. Then 27e23 ≤ −4e32 (since∏
i<j(ti − tj)

2 ≥ 0) It follows that π(h(R)) ⊆ c.

Since π(gx) = π(x), each Weyl chamber in h(R) maps onto the same subset of (h/S3)(C). Fix a (closed)
Weyl chamber C (the shaded chamber in the figure) which contains the vector (1, 0,−1). Fix c > 0 and
consider the circle S = h(R) ∩ {t :

∑
i t

2
i = 6c2}. If t is a point on this circle, then e2(t) = ((

∑
i ti)

2 −∑
i t

2
i )/2 = −3c2. So π(S) is a subset of the vertical line segment {(s2, s3) : s2 = −3c2} ∩ c = {−3c2} ×

[−2c3, 2c3]. The circle S meets the boundary of the Weyl chamber ∂C at two points p1 = (2c,−c,−c) and
p2 = (c, c,−2c). We compute π(p1) = (−3c2, 2c3) and π(p2) = (−3c2,−2c3). By intermediate value theorem
π(S ∩ C) is a connected subset of the vertical line segment {−3c2} × [−2c3, 2c3], that contains both the
endpoints, so we must have π(S) = π(S ∩ C) = {−3c2} × [−2c3, 2c3] and hence π(C) = π(h(R)) = c. �

2.12. Lemma. (The braid space) (Cn−M)/Sn strongly deformation retracts onto the subspace A = ({e1(t) =
0} −M)/Sn Where M denotes the set of mirrors. So these spaces are homotopy equivalent.

Proof. Define F : Cn × [0, 1] → Cn by F (t1, · · · , tn, ǫ) = (t1 − ǫe1(t)/n, · · · , tn − ǫen(t)/n). Then

◦ F (t, 0) = idCn ,
◦ F (·, ǫ)|{e1(t)=0} = id{e1(t)=0} for each fixed ǫ,
◦ F (·, 1) ⊆ {e1(t) = 0},
◦ Each F (·, ǫ) is S3 equivariant and preserves M.

So F induces the required strong deformation retract. �
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