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T H E  U N D E F I N A B I L I T Y  O F  I N T E R S E C T I O N  F R O M  

P E R P E N D I C U L A R I T Y  I N  T H E  T H R E E - D I M E N S I O N A L  

E U C L I D E A N  G E O M E T R Y  O F  L I N E S  

ABSTRACT. The undefinability in question is proved by constructing a bijection of lines preserving 
perpendicularity but not intersection. 

I N T R O D U C T I O N  

In Schwabh/iuser and Szczerba I-3] formalizations of Euclidean geometry are 

considered in which the universe consists of lines and the primitive notions 

are relations on lines. A set of primitive notions sufficient to formalize n- 
dimensional Euclidean geometry is found for each n >/2. For n ~> 4, the single 

binary notion of perpendicularity (two lines intersecting at a right angle) 
suffices. For  n = 2, this notion in conjunction with the ternary notion of 

copunctuality (three lines intersecting at a single point) suffices and is shown 

to be minimal, in the sense that neither notion is definable from the other. For  

the remaining case of n = 3, the two binary notions of perpendicularity and 
intersection are shown to be sufficient. It is easy to see that perpendicularity is 

not definable from intersection. (The proof  uses Padoa's  method.) Schwab- 
h~iuser and Szezerba ask whether intersection is definable from per- 

pendicularity for n = 3. This paper answers that negatively, thus proving that 
perpendicularity and intersection form a minimal set of primitive notions 

sufficient to formalize the three-dimensional Euclidean geometry of lines. 

P R E L I M I N A R I E S  

is the set of all real numbers, and R 3 is the three-dimensional vector space 
over E. The operations • and x are the dot and cross products, respectively. 

lal is the length of the vector a. In this paper all vectors are in E3. 
A line is any set A = {p + 2a12e E}, where p and a are vectors. If lal = 1, 

then a is called a direction vector of A. Every line has exactly two direction 
vectors. If a is a direction vector, then so is - a. Let ~ be the set of all lines. 

Throughout  this paper, real numbers will be denoted by lowercase Greek 
letters (except 6 and 0), vectors by lowercase Roman letters, and lines by 

uppercase Roman letters. Given a line denoted by an uppercase Roman 
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letter, the corresponding lowercase letter will denote  one of its direction 
vectors. 

One vector identity which will be used is the following: 

(1) a x b ' e  x d = (a" c)(b" d) - (a" d ) (b ' c )  

The validity of this is easily checked. 
Let  p lie on A and q lie on B, where A and B are not  parallel. It is easy to 

check that  

(2) A intersects B iff (p -- q). a x b = 0. 

A function 6: • --+ ~ is called a derivation provided 6(~ + fl) = 6(c0 + 6(fl) 
and 3(afl) = 6(a)fl + a3(fl) for any ~ and ft. Note  that  6 is not required to be 
linear over ~. If 6 is a derivat ion and ~ is algebraic, then 6(~) = 0. (Thus, the 
product  rule implies that  6 is linear over the algebraic reals.) The existence of '  
nontrivial  derivations is guaranteed by the following fact. 

FACT.  L e t  c~ be any  transcendental  number. Then  there ex i s t s  a derivation 6 

with ~(~) # O. 

This is a special • case of Lang [2, p. 267]. 
Given a derivat ion J, we define a function 0: ~3 ~ 3  by 

3((~, f l , 7 ) ) =  (6(~), 3(fl),3(7)). 3 satisfies many  identities similar to vector 

calculus identities. Among these are 

(3) 3 ( -  a) = - 3(a), 

6(a-b)  = 3(a). b + a" 3(b), 

l a l = l  implies a . 3 ( a ) = 0 ,  

(4) 

(S) 

and 

(6) [a[= 1 implies a x 3 ( a ) ' a x b = 3 ( a ) ' b .  

The proofs of (3) and (4) are analogous to the proofs of the corresponding 

vector  calculus identities. For  (5), we have 

a" 3(a) = 1 (3(a)" a + a" 3(a)) 

1 
= ~ 6(a .a)  

1 
= ~ 3(1) 

= 0 .  



I N T E R S E C T I O N  AND P E R P E N D I C U L A R I T Y  

The p roo f  of (6) uses (1) and (5). 

a × -3(a).a × b = (a" a)(6(a)" b) - (a. b)(3(a).a) 

= 3(a)" b 
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For  any der ivat ion 6, we define a function 0~: ~ ~ £,e by 

(7) O~(A) = {p + ax3(a) lpEA} ,  

where a is a direction vector  of  A. Using (3), we have ( -  a) x 5 ( -  a) = a x 3(a), 

so that  the right side of(7) does not  depend on which direction vector  a of A is 
chosen. Thus  0~ is well defined. Clearly 0o is a bijection on 2,f which translates 

each line parallel  to itself. No te  that  a is a direction vector  of O~(A). 

T H E O R E M  1. Let 6 be a derivation and let a and b be direction vectors of A 
and B, respectively. I f  A intersects B, then O~(A) intersects O~(B) if and only if 
6(a. b) = O. 

Proof. Let  A intersect B. Then  either A = B or A is not  parallel to B. If 
A = B the conclusion follows easily, since in that  case 6(a. b) = 6(_+ 1) = 0. 

Thus,  we can assume that  A is not  parallel to B. Let  p be the point  of 

intersection of A and B. By (7), p + a x ~(a) lies on O~(A) and p + b x 6(b) lies 
on O~(B). By (2), we have 

O~(A) intersects O~(B) iff ( ( p + a x ~ ( a ) ) - ( p + b x - 6 ( b ) ) ) . a x b = O .  

But by (6) and (4), 

((p + a x 6(a)) - (p + b x ~(b))). a x b = a x -6(a).a x b + b x ~(b). b x a 

= 6(a)" b + 6(b).a 

= 6(a.b). 

The theorem follows. [ ]  

Since 0~ translates every line parallel to itself, it preserves perpendicular i ty  if 

and only if it preserves the intersections of  perpendicular  lines. Therefore,  the 
following corol lary  is an easy cQnsequence of Theo rem 1. 

C O R O L L A R Y .  Let 6 be a derivation. Then O~ preserves perpendicularity. 
That is, if A is perpendicular to B, then O~(A) is perpendicular to Oa(B). 

The main  result is s tated in Theo rem 2. 

T H E O R E M  2. Intersection is no t definc~ble JCro~n perpendicularity in the three- 
dimensional Euclidean 9eometry of lines. 
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Proof The proof uses Padoa's method (see Beth [1, pp. 87-89]). Let ~ be 
any transcendental number between - 1 and 1. Then there exists a derivation 
6 with 6(ct) ¢ 0. By the corollary to Theorem 1, 0~ is a bijection of lines which 
preserves perpendicularity and thus preserves every relation on &a definable 
from perpendicularity. 

If we choose any unit vectors a and b such that a '  b --- ~ and choose any 
pair of intersecting lines A and B with direction vectors a and b, respectively, 
we see by Theorem 1 that O~(A) does not intersect O~(B), and hence 0~ does not 
preserve intersection. The theorem follows. []  
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