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Let G be a Lie group acting on a smooth manifold M . That is, there exists
a smooth map Φ : G ×M → M ; (g,m) 7→ g · m such that g · (h · m) = (gh) ·
m. An action is called proper if for each compact subset A ⊆ M , Φ−1(A) is
compact. A nice fact in the theory of Lie group actions is that if an action
is both proper and free (meaning that it has only trivial stabilizers), then the
quotient M/G is again a manifold. However, if the actions is only assumed to be
proper, then the quotient need not be a manifold. For example, if we think of
the Lie group SU(2) as a three-dimensional real manifold, with the subgroup D
of diagonal matrices acting via conjugation, then this action is proper (because
D is topologically the same as the unit circle, hence compact), and not free
(for example, the matrix diagonal(−1,−1) fixes everything), and the result of
quotienting out by the action is the unit disc: no longer a smooth manifold!
Instead, what is obtained is a stratified space. Loosely speaking, a stratified space
is very similar to a manifold-with-boundary, except that the boundary may have
non-empty boundary as well (and turtles on down), and boundaries need not
be of codimension one, as happens in manifolds-with-boundary. We will give a
more precise definition a little later, but note that in the example given, this is
exactly the case (the unit disc has a boundary of codimension 1). Furthermore,
the stratified structure of a quotient by a proper action gives information on
the geometry of the original manifold. For example, if the action is both proper
and free, then M is a left principal fibre bundle with structure group G (over
the quotient manifold M/G). It turns out that in general, if you quotient out
a manifold by a proper Lie group action, then the strata of the quotient M/G
correspond to “orbits of the family of all vector fields on M/G.”
First, let us define the notion of a differential space. A differential space (S,C∞S)
is a topological space S together with a family C∞S of real-valued functions on
S satisfying:

1. {f−1(I)|f ∈ C∞S and I ⊆ R is an open interval} is a subbasis for the
topology on S.

2. If f1, ..., fn ∈ C∞S and F ∈ C∞Rn then F (f1, ..., fn) ∈ C∞S.
3. If f : S → R is a function such that for each x ∈ S, there exists an open

neighborhood U of x and a function fx ∈ C∞S satisfying fx|U = f |U then
f ∈ C∞S.

For example, any manifold M is a differential space (M,C∞M) where C∞M
denotes the usual collection of smooth functions on M . A differential space is
called subcartesian if it is Hausdorff and every x ∈ S has a neighborhood U
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diffeomorphic to a subset V of Rn. Note that V may not be open.
One of the reasons that manifolds are such nice structures is that they come
equipped with a tangent bundle, allowing one to do many linear-algebra type
arguments. The corresponding notion for a subcartesian space (S,C∞S) (or
differential space in general) is that of the set of derivations of C∞S. A derivation
at a point x ∈ S is a linear map Xx : C∞S → R such that for every f, h ∈ C∞S,
Xx(fh) = Xx(f)h(x)+f(x)Xx(h). A derivation of C∞S is then a collection X of
derivations, one at each point of x ∈ S (so X : S × C∞S → R; (x, f) 7→ Xx(f)).
We denote the set of all derivations on C∞S as Der(C∞S). An integral curve of
a derivation X ∈ C∞S is a smooth map c : I → S from a non-empty interval
I ⊆ R if d

dt
f(c(t)) = Xc(t)(f) for every f ∈ C∞S and t ∈ I. For each x ∈ S and

X ∈ Der(C∞S) there exists a unique maximal integral curve c of X such that
0 ∈ I and c(0) = x. For c the maximal integral curve of X at x, we denote c(t)
by exp(tX)(x). A vector field on a subcartesian space (S,C∞S) is an element
X ∈ Der(C∞S) such that there exist an open neighborhood U of x and ε > 0
such that for every t ∈ (−ε, ε), exp(tX) is defined on U and exp(tX)|U is a
diffeomorphism from U onto an open subset of S. An orbit of a family F of
vector fields on a subcartesian space S is defined as follows: Let X1, ..., Xn ∈ F
and x0 ∈ S. Define a piecewise smooth curve given by first following the integral
curve of X1 through x0 for time t1, then following the integral curve of X2 through
x1 = exp(t1X1)(x0) for time t2, then X3 through x2 = exp(t2X2)(x1) for a time
t3, and so on. For j = 1, ..., n, let Ij be the closed interval in R with endpoints 0
and tj. Then the orbit of F through x0 is defined as:

Ox0 =
∞⋃
n=1

⋃
X1,...,Xn∈F

⋃
I1,...,In

n⋃
j=1

{exp(tjXj)(xj−1) ∈ S|tj ∈ Ij}

where xj = exp(tjXj)(xj−1). It will turn out that the stratified structure on
M/G gives information on the orbits of vector fields on M/G.
A stratified space (S,L) is a second-countable subcartesian differential space
(S,C∞S) with a collection L of smooth manifolds with

⋃
M∈LM = S subject to:

1. L is locally closed: for each M ∈ L and x ∈ M , there exists a neigh-
borhood U of x in S such that M ∩ U is closed in U .

2. L is locally finite: for each x ∈ S there exists a neighborhood U of x in
S such that U intersects only a finite number of manifolds M ∈ L.

3. The Frontier Condition: For M,N ∈ L, if M ∩ N̄ 6= ∅, then either
M = N or M ⊆ N̄ \N , where N̄ denotes the closure of N in S.

Note that C∞S ⊆
⋃
M∈LC

∞M , but the reverse inclusion need not hold (example:
manifolds with boundary).
The basic story is this: given a proper Lie group action Φ : G×M →M , M/G is
a stratified space with orbit − type stratification. The orbit-type stratificaton is
constructed as follows: Let H be a compact subgroup of G, and define M(H) :=
{x ∈ M |Gx = gHg−1 for some g ∈ G}, where Gx = {g ∈ G|gx = x} is the
isotropy group of the point x ∈M . M(H) is called the subset of M of orbit type
H. Let M be the family of connected components of M(H) as H varies over all
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compact subgroups of G. M then yields a stratification of M (not a trivial fact
- actually takes quite a bit of work). To obtain a stratification L on M/G, we
project the stratification M from M to M/G.
Sketch of proof that M is a stratified space with the stratification

M = {connected components of M(H)|H a compact subgroup of G}

The basic idea behind the proof is to first show that for a given compact sub-
group H of G, M(H) is a local submanifold of M (meaning that each connected
component of M(H) is a submanifold of M). This will be enough to show that M
actually is a set of manifolds covering1 M , and that it is locally closed (submani-
folds of a manifold are locally closed). The way to show this is to first decompose
the Lie algebra of G as g = h⊕ m, where h is the Lie subalgebra corresponding
to H in G and m is an orthogonal subspace to it. Using this decomposition, one
then shows that there is a diffeomorphism ϕ from an open neighborhood (W,Sp)
in m × Sp onto an open neighborhood U of p ∈ {x ∈ M |Gx = H}, where Sp is
a slice2 of the action at p Then one shows that the set SHp of H-invariant points

of Sp is a local submanifold of Sp, so W × SHp is a local submanifold of W × Sp
and ϕ−1(W × SHp ) = U ∩M(H).
Then, to show that M is locally finite, one proceeds by induction: if dimM = 0,
then M is discrete, since G is assumed to be connected and the action (at least)
continuous, every point of M is a fixed point of G, and there is only one orbit
type: namely, M(G) = M , so M is locally finite. Then assuming that we know
M is locally finite for every dimN < m for some fixed m ≥ 1, around each
p ∈M , we construct a Gp-invariant ball in T ∗Sp, and this has dimension strictly
less than m. Then one shows that by projecting down to M , using the local
finiteness of the inductive assumption, and gluing the balls together, each point
in M is only contained in finitely many components of M(H) for finitely many
compact subgroups H of G.
Finally, to show that M satisifies the frontier condition requires quite a bit of
technical details in looking at a horizontal distribution related to the action of
G, which arises in the construction of Sp using a G-invariant Riemannian metric.
See [2], section 4.2.
It follows (after a little work showing that the quotient of these orbit-type strata
is still a manifold) that M/G is a stratified space with stratification π(M).
Example [1]: In the case of D acting on SU(2) as above, SU(2)(H) 6= ∅ if and
only if H = D or H = {I,−I}. This yields the stratification M = {diagonal
matrices, matrices with non-zero off-diagonal elements}. Taking the quotient

1We know that it covers M – follows directly from the definition of a proper action that Gp

is compact for each p ∈M .
2Meaning: Sp is a submanifold of M containing p such that:

1. TpM = TpSp ⊕ Tp(Gp), where Gp = {g · p|g ∈ G}.
2. For every q ∈ Sp, TqM = TqSp + Tq(Gq).
3. Sp is Gp invariant.
4. For q ∈ Sp and g ∈ G, if g · q ∈ Sp, then g ∈ Gp.

Such a slice can be constructed from a G-invariant Riemannian metric (deliberately vague).
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SU(2)/D then yields the stratification:

{S2 := {[A]α,b : |α|2 + b = 1, b ∈ (0, 1]}, S1 := {[A]α,0 : |α|2 = 1}}
where [A]α,b is a parametrization of the equivalence classes in SU(2)/D with

α ∈ D(0, 1) ⊂ C and b ∈ [0, 1], where the off-diagonal elements have norm b, and
the diagonal is diagonal(α, ᾱ). Note that as real manifolds S2 has dimension 2,
S1 has dimension 1, and S1 is the boundary of S2. In fact, it is easy to see that
you can smoothly map S2 to the interior of the unit disc and S1 to its boundary.
(Just map α!)

Theorem: Strata of the orbit type stratification of M/G are orbits of the family
of all vector fields on M/G.
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