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1. Fields and Vector Spaces

1.1. Fields.

Definition 1.1. A binary operation ∗ on a set A is a function ∗ : A × A → A.
Rather than ∗(a, b) we write a ∗ b.

Definition 1.2. An abelian group is a set A with a binary operation ∗ on it, satisfying

(i) (Associative Law) (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ A.
(ii) (Commutative Law) a ∗ b = b ∗ a for all a, b ∈ A.
(iii) (Existence of Identity) There is an element e ∈ A such that e ∗ a = a for all

a ∈ A. Such an e is called an identity element (relative to ∗).
(iv) (Existence of Inverses) For each element a ∈ A there is an element a′ ∈ A such

that a ∗ a′ = e. The element a′ is called an inverse of a (relative to ∗).

Proposition 1.3. Let A be an abelian group with binary operation ∗.
(a) (Uniqueness of Identity) If e and e′ are identity elements of A, then e = e′.
(b) (Uniqueness of Inverse) Let a ∈ A. If a′ and a′′ are inverses of A, then a′ = a′′

(c) (Cancellation Law) If a ∗ b = a ∗ c then b = c.

Proof. Exercise. □

Definition 1.4. A field is a set F together with two binary operations + (called
addition) and · (called multiplication) satisfying

(F1) F with + is an abelian group; 0 denotes the identity element relative to +.
(F2) F \ {0} with · is an abelian group; 1 ∈ F \ {0} denotes the identity element

relative to ·.
(F3) (Distributive Law) (α + β) · γ = α · γ + β · γ for all α, β, γ ∈ F.

Rather than saying the “inverse relative to +/·” we speak of the additive/multiplicative
inverse. Similarly, we call 0 the additive identity, and 1 the multiplicative identity.

Example 1.5. Q,R,C,Fp = Z/pZ are fields under usual operations.

Example 1.6. Z (with usual operations) is not a field because 2 ∈ Z does not have
a multiplicative inverse. Similarly, the set of positive real numbers R>0 (with usual
operations) is not a field because there is no additive identity element.
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1.2. Vector Spaces.

Definition 1.7. Let F be a field. An F-vector space (or vector space over F), V , is
a set with two operations, a binary operation + : V × V → V called addition, and
an operation F× V → V , (λ, v) 7→ λv called scaling such that

(V1) V is an abelian group with respect to +. The identity element is denoted by
0V or just 0. The inverse of v ∈ V is denoted −v.

(V2) (λµ)v = λ(µv) for all λ, µ ∈ F and v ∈ V .
(V3) 1v = v for all v ∈ V .
(V4) λ(u+ v) = λu+ λv for all λ ∈ F, u, v ∈ V .
(V5) (λ+ µ)v = λv + µv for all λ, µ ∈ F, v ∈ V .

The following properties follow from the axioms.

Proposition 1.8. Let V be a vector space. Then

(i) 0v = 0V for all v ∈ V .
(ii) (−1)v = −v for all v ∈ V .

Example 1.9. The set Fn of all column vectors


a1
a2
...
an

, ai ∈ F is a vector space with

operations 
a1
a2
...
an

+


b1
b2
...
bn

 =


a1 + b1
a2 + b2

...
an + bn

 , λ


a1
a2
...
an

 =


λa1
λa2
...

λan


For positive integers n,

n = {1, 2, . . . , n}.

Example 1.10. Similarly, the set Fm×n = Mm×n(F) of all m× n-matrices

(aij)i∈m,j∈n =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn


with entries aij ∈ F, is a vector space with the obvious entry-wise operations.

Definition 1.11. The transpose of a matrix A = (aij)i∈m,j∈n is defined by AT =
(aji)j∈m,i∈n. Thus it takes m× n-matrices to n×m-matrices.

A column vector can thus be written
[
a1 a2 · · · an

]T ∈ Fn.
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Example 1.12. Let A be a set and V be a vector space. Let V A denote the set of
all functions from A to V . Then V A is a vector space with respect to the so-called
pointwise operations:

(f + g)(a) = f(a) + g(a), (λf)(a) = λf(a), ∀f, g ∈ V A, a ∈ A, λ ∈ F.

One may regard Fn as a special case of this construction by identifying a column[
v1 v2 · · · vn

]T ∈ Fn with the function v ∈ Fn given by v(i) = vi for i ∈ n =
{1, 2, . . . , n}. Similarly Fm×n is really the same thing as Fm×n.

1.3. Subspaces.

Definition 1.13. A subset W of a subspace V is called a subspace, if W is itself a
vector space with respect to the same operations as in V .

In particular, for W to be a subspace, it is necessary that w + w′ ∈ W for all
w,w′ ∈ W (i.e. W is closed under addition) and λw ∈ W for all w ∈ W and λ ∈ F
(i.e. W is closed under scaling.) In fact, these conditions are also sufficient:

Proposition 1.14. Let W be a subset of a vector space V . Suppose W is closed
under the operations of addition and scaling in V . Then W is a subspace of V .

Example 1.15. Let A be a set and V be a vector space. Let V (A) be the subset of V A

consisting of all functions f : A → V such that f−1({0V }) is finite (or, equivalently,
f(a) is nonzero for at most finitely many a ∈ A). Then V (A) is a subspace of V A.

Definition 1.16. Let V be a vector space. Let I be a (possibly infinite) index set.
Let (Wi)i∈I be a family of subspaces of V . We define∑

i∈I

Wi = {wi1 + wi2 + · · ·+ wik | k ≥ 0, ij ∈ I, wij ∈ Wij}

As usual, we should interpret the expression wi1 +wi2 + · · ·+wik as the zero vector
in V in the case when k = 0. In the case when I is a finite index set, such as
{1, 2, . . . ,m} we have

W1 +W2 + · · ·+Wm = {w1 + w2 + · · ·+ wm | wi ∈ Wi}
Furthermore, we let

⋂
i∈I Wi denote the intersection of all the subspaces Wi.

Proposition 1.17. Let V be a vector space. Let I be an index set. Let (Wi)i∈I be a
family of subspaces of V .

(i)
⋂

i∈I Wi is a subspace of V .
(ii)

∑
i∈I Wi is a subspace of V .

There are two further notions related to the sum of subspaces.
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Definition 1.18. Let V be a vector space. Let I be an index set. Let (Wi)i∈I be
a family of subspaces of V . We say that the family of subspaces is independent if
whenever we have

wi1 + wi2 + · · ·+ wik = 0

and wij ∈ Wij for j = 1, 2, . . . , k, then wi1 = wi2 = · · · = wik = 0. In this case we
denote the sum of subspaces by

⊕i∈IWi

and say that the sum is direct.

1.4. Bases and Coordinates.

Definition 1.19. Let V be a vector space and A a subset of V .

(i) If A is finite, say1 A = {v1, v2, . . . , vk}, we say that A is linearly dependent if
there are scalars λ1, λ2, . . . , λk ∈ F, not all of them zero, such that

λ1v1 + λ2v2 + · · ·+ λkvk = 0. (1.1)

(ii) A is linearly dependent if there is a finite linearly dependent subset of A.
(iii) A is linearly independent if it is not linearly dependent.
(iv) A linear combination of elements of A is a vector in V of the form

λ1a1 + λ2a2 + · · ·+ λmam

for some λi ∈ F, ai ∈ A.
(v) The span of A is the set of all linear combinations of elements of A:

SpanA = {λ1a1 + λ2a2 + · · ·+ λmam | m ≥ 0, λi ∈ F, a ∈ A}
(vi) A spans V or is a spanning set for V if SpanA = V.
(vii) A is a basis for V if A is linearly independent and spans V .

Example 1.20. The set A = {

10
0

 ,

01
1

} is a linearly independent subset of F3 but

it does not span; the vector

01
0

 does not belong to the span of A.

Exercise 1.1. Let A be a set. For each a ∈ A, define a function ea : A → F by

ea(b) =

{
1, if b = a,

0, otherwise.

Show that {ea | a ∈ A} is a basis for F(A).

1when naming the elements of a set like this we always mean vi ̸= vj ∀i ̸= j
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Definition 1.21. F(A) is called the free vector space on A and is also denoted by
FA.

1.5. Linear Maps.

Definition 1.22. Let V and W be vector spaces. A map T : V → W is linear if

T (v + v′) = T (v) + T (v′), T (λv) = λT (v) (1.2)

for all v, v′ ∈ V and λ ∈ F. The set of all linear maps from V to W is denoted by

Hom(V,W ) = HomF(V,W ). (1.3)

We also put
End(V ) = EndF(V ) = HomF(V, V ). (1.4)

Proposition 1.23. The identity map IdV : V → V is a linear map. If T : V → W
and S : W → U are linear maps, then the composition S ◦ T : V → U is linear.

1.6. Change of Bases. Let B = (b1, b2, . . . , bn) and B′ = (b′1, b
′
2, . . . , b

′
n) be two

bases for a vector space V . We introduce the change-of-basis matrix

P =
[
[b1]B′ [b2]B′ · · · [bn]B′

]
This is expressing the “old” basis (B) in the “new” basis (B′).

2. Quotient Spaces

2.1. Cosets and their Operations.

Definition 2.1. Fix a vector space V and a subspace U ≤ V . A coset of U in V is
a subset of V of the following form:

v + U = {v + u | u ∈ U} (2.1)

The coset 0V +U is called the trivial coset. The set of all cosets of U in V is denoted
by U/V :

V/U = {v + U | v ∈ V }. (2.2)

The sum of two cosets v + U and v′ + U is defined by

(v + U) + (v′ + U) = (v + v′) + U. (2.3)

The scaling of a coset v + U by a scalar λ ∈ F is defined by

λ(v + U) = (λv) + U. (2.4)

Lemma 2.2. (a) Two cosets v + U and v′ + U are equals iff v − v′ ∈ U .
(b) The sum of two cosets does not depend on the choice of representative. That is,

if v + U = w + U and v′ + U = w′ + U , then (v + v′) + U = (w + w′) + U .
(c) The scaling of a coset does not depend on the choice of representative. That is,

if v + U = w + U , then (λv) + U = (λw) + U .
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Proposition 2.3. Let V be a vector space and U be a subspace of V . Then V/U
becomes a vector space using the sum and scaling of cosets defined above.

2.2. Applications. Besides being a fundamental construction in linear algebra, quo-
tient spaces have applications to multilinear algebra when defining the tensor prod-
uct, exterior product, and symmetric product (see Section 3). The exterior product
is furthermore used in differential geometry.

Below we give two examples from calculus.

Example 2.4. Let C(R) be the set of continuous function from R to R and let
C1(R) be the set of once continuously differentiable functions from R to R. These
are both vector spaces over R with pointwise operations (f + g)(x) = f(x) + f(x),
(λf)(x) = λf(x). Furthermore, the derivative is a linear operator

d

dx
: C1(R) → C0(R).

The kernel of this linear map is the set of all functions whose derivative is zero.
In other words, it’s the constant functions from R to R. Let us denote this set of
constant functions by R1. The map d

dx
is furthermore surjective, which follows from

the fundamental theorem of calculus. Thus, by the first isomorphism theorem for
vector spaces, we have an isomorphism

C1(R)/R1 → C0(R).

The inverse of this map is given by the indefinite integral. We see from this that∫
f(x)dx is not a function but a coset F (x) + R1, where F ∈ C1(R), F ′(x) = f(x).

Example 2.5 (Big ordo notation). Let n > 0 be an integer. Let O(xn) denote the
vector space of all continuous functions f : R → R for which there is a constant
C > 0 such that |f(x)| ≤ Cxn for all x > 0. Then O(xn) is a subspace of the
vector space C(R) of all continuous functions from R to R. An expression such as
g(x) + O(xn) is thus technically a coset of O(xn) in C(R). So, instead of writing
f(x) = g(x) + O(xn), it would be better to write f(x) ∈ g(x) + O(xn).

2.3. Bases and Coordinates.

Theorem 2.6. Let B be a basis for U . Extend B to a basis B ⊔ C for V . Then
C̄ = {c+ U | c ∈ C} is a basis for V/U .

2.4. Isomorphism Theorems.

Lemma 2.7. Let L : V → W be a linear map, and U ≤ V such that U ⊂ kerL.
Then there is a well-defined linear map

L̄ : V/U → W, v + U 7→ L(v) (2.5)
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Proof. Indeed, if v+U = v′+U , then v− v′ ∈ U hence L(v)−L(v′) = L(v− v′) = 0
since U ⊂ kerL. This shows that L̄ is a well-defined function. That it is linear
follows from that L is linear, using the vector space operations in V/U . □

In this situation we say that L̄ is induced from L.

Theorem 2.8. (i) (First Isomorphism Theorem) Let L : V → W be a linear map,
and let K = kerL. Then the induced linear map L̄ : V/K → imL is an
isomorphism.

(ii) (Second Isomorphism Theorem) Let U,W ≤ V . Then (U +W )/W ∼= U/(U ∩
W ).

(iii) (Third Isomorphism Theorem) Let U ≤ W ≤ V . Then (V/U)/(W/U) ∼= V/W .

3. Tensor Products

3.1. Definition and Basic Properties. Let V and W be vector spaces, and let
F(V×W ) denote the free vector space on V ×W . It has a basis denoted {e(v,w) | v ∈
V,w ∈ W}. Let U(V,W ) denote the subspace of F(V×W ) spanned by the following
set:

{e(u+v,w) − e(u,w) − e(v,w) | u, v ∈ V, w ∈ W}
∪ {e(v,w+z) − e(v,w) − e(v,z) | v ∈ V, w, z ∈ W}
∪ {e(λv,w) − λe(v,w) | v ∈ V,w ∈ W,λ ∈ F}
∪ {e(v,λw) − λe(v,w) | v ∈ V,w ∈ W,λ ∈ F}.

Definition 3.1. The quotient space F(V×W )/U(V,W ) is called the tensor product of
V and W , denoted V ⊗W . For each v ∈ V and w ∈ W we also put

v ⊗ w = e(v,w) + U(V,W ) ∈ V ⊗W.

Definition 3.2. Let V,W,U be vector spaces. A function β : V ×W → U is called
bilinear if β(v, ·) : W → U and β(·, w) : V → U are linear for all v ∈ V and w ∈ W .
The set of all bilinear maps β : V ×W → U is denoted by Bil(V ×W,U).

Exercise 3.1. Check that Bil(V × W,U) is a subspace of the space UV×W of all
functions from V ×W to U .

Proposition 3.3. The tensor product of V and W has the following properties:

(i) The function βV,W : V ×W → V ⊗W , (v, w) 7→ v ⊗ w is bilinear. That is,

(u+ v)⊗ w = u⊗ w + v ⊗ w, (λv)⊗ w = λ(v ⊗ w)

v ⊗ (w + z) = v ⊗ w + v ⊗ z, v ⊗ (λw) = λ(v ⊗ w)

for all u, v ∈ V , w, z ∈ W , λ ∈ F.
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(ii) If U is a third vector space, the map

Hom(V ⊗W,U) → Bil(V ×W,U), B 7→ B ◦ βV,W

is an isomorphism of vector spaces.
(iii) If B is a basis for V , and C is a basis for W then the set B ⊗ C, defined by

{b⊗ c | b ∈ B, c ∈ C}, is a basis for V ⊗W .

In particular,

dimV ⊗W = (dimV )(dimW ).

Example 3.4. Fm ⊗ Fn has a basis {ei ⊗ ej | i ∈ m, j ∈ n}.

3.2. Tensor products of linear maps; Kronecker products. If T : V → W
and S : V ′ → W ′ are linear maps, the map V × V ′ → W ⊗ W ′ given by (v, v′) 7→
T (v)⊗ S(v′) is bilinear, hence there is an induced map denoted

T ⊗ S : V ⊗ V ′ → W ⊗W ′, v ⊗ v′ 7→ T (v)⊗ T (v′).

Definition 3.5. Let A = (aij)i∈m,j∈n ∈ Fm×n, B = (bkl)k∈s,l∈t ∈ Fs×t. TheKronecker
tensor product A⊗B ∈ Fms×nt is defined by

A⊗B = (aijbkl)(i,k)∈m×s,(j,l)∈n×t

Example 3.6. [
a b
c d

]
⊗B =

[
aB bB
cB dB

]
Proposition 3.7. We have [T ⊗ T ′] = [T ]⊗ [T ′]. In more detail, if T : V → W and
T ′ : V ′ → W ′ are linear maps, and B,C,B′,C′ are bases for V,W, V ′,W ′ respectively,
then

[T ⊗ T ′]B⊗B′,C⊗C′ = [T ]B,C ⊗ [T ′]B′,C′

where in the left hand side, ⊗ is the tensor product of linear maps, and in the right
hand side ⊗ is the Kronecker tensor product of matrices.

4. Primary Decomposition of a Linear Transformation

4.1. The Minimal Polynomial of a Linear Transformation. Let F[x] be the
space of polynomials over F in an indeterminate x.

Definition 4.1. Let T : V → V be a linear transformation on a finite-dimensional
vector space V .

(i) A polynomial f(x) ∈ F[x] is an annihilating polynomial for T if f(T ) = 0.
(ii) A monic polynomial m(x) ∈ F[x] is a minimal polynomial for T if degm(x) ≤

deg f(x) for any annihilating polynomial f(x) for T .
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Proposition 4.2. Every linear transformation T : V → V on a finite-dimensional
vector space V has a unique minimal polynomial.

Notation 4.3. If T : V → V is a linear map on a finite-dimensional vector space V ,
we let mT (x) denote its minimal polynomial.

4.2. The Primary Decomposition Theorem.

Theorem 4.4 (The Primary Decomposition Theorem). Let T : V → V be a linear
transformation on a finite-dimensional vector space V . Let

mT (x) = p1(x)
m1p2(x)

m2 · · · pd(x)md (4.1)

be a factorization of the minimal polynomial mT (x) into irreducible monic polynomi-
als pi(x) ∈ F[x]. Then there is a decomposition of V into a direct sum of subspaces:

V = W1 ⊕W2 ⊕ · · · ⊕Wd (4.2)

such that each Wi is T -invariant. If furthermore Ti = T
∣∣
Wi

: Wi → Wi denotes the

restriction of T to Wi, then mTi
(x) = pi(x)

mi for each i = 1, 2, . . . , d.

Corollary 4.5. Let T : V → V be a linear transformation on a finite-dimensional
vector space V . Suppose that the minimal polynomial of T factors into linear factors
in F[x]:

mT (x) = (x− λ1)
m1(x− λ2)

m2 · · · (x− λd)
md

where λi ∈ F for i = 1, 2, . . . , d. Then V decomposes into a direct sum of the form
(4.2) such that each Ti = T

∣∣
Wi

: Wi → Wi has the property that Ti − λi IdWi
is

nilpotent.

Proof. Immediate from the Primary Decomposition Theorem since (Ti−λi IdWi
)mi =

mTi
(Ti) = 0. □

5. Normal Forms for Linear Transformations

5.1. Normal Form for a Nilpotent Linear Transformation. In this section we
state and prove a theorem which characterizes nilpotent linear transformations. It
is a special case of the Jordan normal form. On the other hand, this special case is
the key step in proving the general case.

Definition 5.1. Let n be a positive integer.
(i) An n× n-matrix A is called nilpotent, if Ar = 0 for some positive integer r.
(ii) A linear transformation T : V → V of an n-dimensional vector space V is called

nilpotent if T r = 0 for some positive integer r.

Exercise 5.1. (a) Show that the direct sum of nilpotent matrices is nilpotent.
(b) Show that any matrix similar to a nilpotent matrix is itself nilpotent.
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(c) Show that a linear transformation T : V → V of a finite-dimensional vector space
V is nilpotent if and only [T ]B is nilpotent in some (hence, by (b), in every) basis
B.

Now we introduce certain special nilpotent matrices.

Definition 5.2. Let

J1 =
[
0
]
, J2 =

[
0 1
0 0

]
, J3 =

 0 1 0
0 0 1
0 0 0

, (5.1)

and, more generally, for positive integers n,

Jn =


0 1

1
0

. (5.2)

The matrix Jn is the nilpotent (upper-triangular) Jordan block of size n × n. The
lower-triangular versions are obtained by taking the transpose.

Note that (Jn)
n = 0 and (Jn)

n−1 ̸= 0. 2 The following theorem says that, in
fact, any nilpotent matrix is similar to a direct sum of nilpotent Jordan blocks Jd.
We formulate it in terms of linear transformations. (Taking V = Fn and T = TA

(left multiplication by A), we get the matrix case, since [TA]B = P−1AP , where the
columns of P make up the basis B.)
The following terminology will be convenient in the course of the proof:

Definition 5.3. Let V be a vector space and W be a subspace of V . A subset S of
V is linearly independent over W if S̄ = {s +W | s ∈ S} is linearly independent in
V/W . Similarly, we say that S spans V over W or is a basis for V over W if S̄ has
the corresponding property in V/W .

Exercise 5.2. Show that S is linearly independent in V over W if and only if
whenever λ1s1 + λ2s2 + · · ·+ λksk ∈ W for some λi ∈ F and distinct si ∈ S, we have
λ1 = λ2 = · · · = λk = 0.

2Here we use the convention [0]0 = [1] when n = 1.
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Theorem 5.4. Let n be a positive integer, V an n-dimensional vector space, and
N : V → V a nilpotent linear transformation. Then there is a basis B for V such
that, for some integers d1 ≥ d2 ≥ · · · ≥ ds ≥ 1:

[N ]B = Jd1 ⊕ Jd2 ⊕ · · · ⊕ Jds

=



0 1

1
0

0 1

1
0

0 1
0 0

0



(5.3)

Proof. If N = 0 the result is clear, so assume N ̸= 0. Let r be the smallest positive
integer such that N r = 0. Thus r ≥ 2. Let Kj = kerN j for j = 0, 1, . . . , r. We have

{0} = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kr = V.

Let {v1, v2, . . . , vp1} be a basis for Kr over Kr−1. Note that Nvi ∈ Kr−1 for all i.
We claim that {Nv1, Nv2, . . . , Nvp1} is linearly independent over Kr−2. To see this,
suppose

λ1Nv1 + λ2Nv2 + · · ·+ λp1Nvp1 ∈ Kr−2

By definition of Kr−2 this means that

N r−2(λ1Nv1 + λ2Nv2 + · · ·+ λp1Nvp1) = 0,

Moving the N ’s to the left, we see that

λ1v1 + λ2v2 + · · ·+ λp1vp1 ∈ Kr−1.

Since {v1, v2, . . . , vp1} is linearly independent over Kr−1, this implies all λi = 0.
It is possible that the set does not span Kr−1 over Kr−2. So extend it by adjoining

vectors vp1+1, vp1+2, . . . , vp2 so that

{Nv1, Nv2, . . . , Nvp1 , vp1+1, vp1+2, . . . , vp2}
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is a basis for Kr−1 over Kr−2. If r = 2 we stop here. Otherwise, applying N to these
vectors we get a set

{N2v1, N
2v2, . . . , N

2vp1 , Nvp1+1, Nvp1+2, . . . , Nvp2}

of vectors in Kr−2 which are linearly independent over Kr−3. The proof of this is the
same as in the previous step. So, we may adjoin vectors vp2+1, vp2+2, . . . , vp3 to form
a basis

{N2v1, N
2v2, . . . , N

2vp1 , Nvp1+1, Nvp1+2, . . . , Nvp2 , vp2+1, vp2+2, . . . , vp3}

for Kr−2 over Kr−3. If r = 3, we stop. Otherwise we continue. Eventually, we end
up with the following set of vectors in V , where we put vji = N jvi for brevity:

B =
{

v1, v2, . . . , vp1 ,
Nv1, Nv2, . . . , Nvp1 , vp1+1, vp1+2, . . . , vp2 ,
...

...
...

...
...

...
vr−1
1 , vr−1

2 , . . . , vr−1
p1

, vr−2
p1+1, v

r−2
p1+2, . . . , v

r−2
p2

, . . . , vpr−1+1, vpr−1+2, . . . , vpr
}
.

The first row is a basis for V = Kr over Kr−1. The second row is a basis for Kr−1

over Kr−2 and so on; the last row is a basis for K1. It follows that B is a basis for
V . Each column spans an N -invariant subspace Wj of V , j = 1, 2, . . . , pr. Let B1

be the first column, ordered from the bottom up; B2 the second column, from the
bottom up, and so on. In the ordered basis B = B1 ∪ B2 ∪ · · · ∪ Bpr , the matrix of
N has the form (5.3), where (d1, d2, . . . , ds) = (dimW1, dimW2, . . . , dimWpr).

□

5.2. Jordan Normal Form of a Linear Transformation.

Definition 5.5. For λ ∈ F and positive integer n, we put Jn(λ) = Jn + λIn. Thus,

J1(λ) =
[
λ
]
, J2(λ) =

[
λ 1
0 λ

]
, J3(λ) =

 λ 1 0
0 λ 1
0 0 λ

, (5.4)

and, more generally, for positive integers n,

Jn(λ)


λ 1

1
λ

. (5.5)

The matrix Jn(λ) is the (upper-triangular) Jordan block of size d×d with eigenvalue
λ. The lower-triangular versions are obtained by taking the transpose.
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Corollary 5.6 (Jordan Normal Form). Let V be a finite-dimensional vector space.
Suppose T : V → V is a linear map whose minimal polynomial factors into linear
factors:

mT (x) = (x− λ1)
m1(x− λ2)

m2 · · · (x− λd)
md .

Then there is a basis B for V such that

[T ]B = A1(λ1)⊕ A2(λ2)⊕ · · · ⊕ Ad(λd), (5.6)

where each Ai(λi) is a direct sum of Jordan blocks with eigenvalue λi:

Ai(λi) = Jni1
(λi)⊕ Jni2

(λi)⊕ · · · ⊕ Jniki
(λi). (5.7)

Here ni1 ≥ ni2 ≥ · · · ≥ niki ≥ 1 and ni1 + ni2 + · · ·+ niki = mi.

Definition 5.7. A field F is algebraically closed if every nonzero polynomial in F[x]
factors into linear factors belonging to F[x].

Corollary 5.8. If F is algebraically closed, then every matrix A ∈ Fn×n is similar
to a block-diagonal matrix with Jordan blocks on the diagonal.

A matrix is said to be in Jordan normal form if it has the form of the right-hand
side of (5.6). For example, the following matrix is in Jordan normal form over F if
λ ̸= µ:

A =



λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

λ 1
0 λ

µ 1 0
0 µ 1
0 0 µ

µ


Its minimal polynomial is mA(x) = (x− λ)4(x− µ)3.
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5.3. Evaluating Polynomials.

Theorem 5.9. Let f(x) ∈ F[x] and let A = Jd(λ) be an d × d Jordan block with
eigenvalue λ ∈ F. Then

f(A) =



f(λ) f ′(λ) 1
2!
f ′′(λ) · · · 1

(d−1)!
f (d−1)(λ)

0 f(λ) f ′(λ) · · · 1
(n−2)!

f (d−2)(λ)

...
. . .

...

...
. . . f ′(λ)

0 0 · · · 0 f(λ)


Proof. Since both sides are linear in f it suffices to prove the statement for f(x) =
xn. By the binomial theorem (which applies to (A + B)n whenever A and B are
commuting matrices),

f(A) = (Jd + λId)
n =

n∑
k=0

(
n

k

)
Jk
dλ

n−k

Notice that
(
n
k

)
λn−k = 1

k!
f (k)(λ), and Jk

d =
∑n−k

j=1 Ej,j+k is the identity matrix shifted
northeast by k steps. □

5.4. Real Jordan Form. The real Jordan block of size 2a×2a associated to σ+iτ ∈
C is

JR
2a(σ + iτ) =



σ τ 1 0
−τ σ 0 1

σ τ 1 0
−τ σ 0 1

. . . . . .
. . . . . .

. . . 1 0
. . . 0 1

σ τ
−τ σ


(5.8)

Exercise 5.3. Show that the set of matrices of the form

[
σ τ
−τ σ

]
where σ, τ ∈ R,

is actually a field isomorphic to C.
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Theorem 5.10. Let A ∈ Rn×n. Then there is an invertible P ∈ Rn×n such that
P−1AP has the form B ⊕ C where

B = B1(λ1)⊕B2(λ2)⊕ · · · ⊕Br(λr)

C = C1(σ1, τ1)⊕ C2(σ2, τ2)⊕ · · · ⊕ Cs(σs, τs)
(5.9)

where
Bj(λj) = Jnj1

(λj)⊕ Jnjkj
(λj), (5.10)

nj1 ≥ nj2 ≥ · · · ≥ njkj ≥ 1, and

Cj(σj, τj) = JR
mj1

(σj, τj)⊕ JR
mj2

(σj, τj)⊕ · · · ⊕ JR
mjlj

(σj, τj), (5.11)

mj1 ≥ mj2 ≥ · · · ≥ mjlj ≥ 1.

Proof. It suffices to consider the case when the minimum polynomial mA(x) for A
has the form p1(x)

m where p1(x) is monic quadratic without real roots. First suppose
the real part of the roots is zero. Then

mA(x) = (x2 + τ 2)m

for some τ ∈ R. By the Primary Decomposition Theorem, Cn = W+ ⊕ W− where
the W± are A-invariant subspaces on which A has minimum polynomial (x ± iτ)m.
Define a function

ϕ : Cn → Cn

by component-wise conjugation. We claim that ϕ(W±) = W∓. Let v ∈ W+. Then
(A + iτ)mv = 0. Applying ϕ and using that A is real we get (A − iτ)mϕ(v) = 0.
Thus ϕ(v) ∈ W−. Similarly for the other case. In fact we see from this that ϕ
restricts to a bijective R-linear map W+ → W− commuting with A. In particular,
dimR W+ = dimR W−. So dimC W+ = dimC W−, therefore n must be even, say
n = 2k, k = dimC W±.
Let (v1, v2, . . . , vk) be a C-basis for W− in which A restricted to W− is in Jordan

normal form. The real and imaginary parts of the basis vectors vj are:

wj =
1

2

(
vj + ϕ(vj)

)
, w′

j =
1

2i

(
vjiϕ(vj)

)
,

We have wj, w
′
j ∈ Rn. Now we describe A in the basisB = (w1, w

′
1, w2, w

′
2, . . . , wk, w

′
k)

for Rn. For this, we apply A to wj and w′
j, and expand the result in B and inspect

the coefficients. Fix j. There are two cases: Either Avj = iτvj or Avj = iτvj + vj−1.
In the former we have

Awj =
1

2

(
Avj + ϕ(Avj)

)
= iτ

1

2

(
vj − ϕ(vj)

)
= −τwj

and similarly
Aw′

j = τwj
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which means we have a block

[
0 τ
−τ 0

]
on the diagonal. In the other case we get

Awj = −τwj + wj−1, Aw′
j = τwj + w′

j−1.

This means we get a block as before plus a 2× 2 identity matrix above it. □

6. Determinants and Invariant Factors

Let V be n-dimensional and T : V → V be linear. Every linear map from a
one-dimensional space to itself is given by multiplication by a scalar.

By homework, ∧nV is one-dimensional, and T induces a linear map ∧nT : ∧nV →
∧nV .

Definition 6.1. The determinant of T , denoted detT ∈ F is given by

∧nT = (detT ) IdV . (6.1)

Let Sn denote the symmetric group, consisting of all permutations (bijections) of
the set {1, 2, . . . , n}. Since ei ∧ ej = −ej ∧ ei, there is a function sgn : Sn → {±1},
called the sign function, such that

eσ(1) ∧ eσ(2) ∧ · · · ∧ eσ(n).

It is not hard to see that sgn(σ ◦ τ) = sgn(σ) sgn(τ) for σ, τ ∈ Sn. (In other words,
sgn is a group homomrphism.)

Theorem 6.2. Let (e1, e2, . . . , en) be a basis for V . Let Tij ∈ F be the entries of
[T ]B, i.e. T (ei) =

∑
j Tijej. Then

det(T ) =
∑
σ∈Sn

(sgnσ)T1σ(1)T2σ(2) · · ·Tnσ(n). (6.2)

Proof. We have

det(T )e1 ∧ e2 ∧ · · · ∧ en

= T (e1 ∧ e2 ∧ · · · ∧ en)

= T
(( n∑

i1=1

T1i1ei1
)
∧
( n∑
i2=1

T2i2ei2
)
∧ · · · ∧

( n∑
in=1

Tninein
))

=
∑

1≤i1,i2,...,in≤n

T1i1T2i2 · · ·Tninei1 ∧ ei2 ∧ · · · ∧ ein

=
∑
σ∈Sn

T1σ(1)T2σ(2) · · ·Tnσ(n)eσ(1) ∧ eσ(2) ∧ · · · ∧ eσ(n)

=
( ∑

σ∈Sn

sgn(σ)T1σ(1)T2σ(2) · · ·Tnσ(n)

)
e1 ∧ e2 ∧ · · · ∧ en
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where we used that v1∧v2∧· · ·∧vn is linear in each factor, ei1∧ei2∧· · ·∧ein = 0 unless
the ij are all distinct hence define a permutation, and the definition of sgn(σ. □

Exercise 6.1. Modify the proof to prove that for every τ ∈ Sn we have

sgn(τ) det(T ) =
∑
σ∈Sn

(sgnσ)Tτ(1)σ(1)Tτ(2)σ(2) · · ·Tτ(n)σ(n). (6.3)

Proposition 6.3. If S, T : V → V are linear then

det(S ◦ T ) = det(S) det(T ), det(IdV ) = 1. (6.4)

Proof. Let Id = Id∧nV for brevity. We have det(S ◦ T ) Id = ∧n(S ◦ T ) = (∧nS) ◦
(∧nT ) = (detS) Id ◦(detT ) Id = (detS)(detT ) Id. Also, det(IdV ) Id = ∧n(IdV ) =
Id. □

Definition 6.4. For A ∈ Fn×n we define det(A) = det(TA), where TA : Fn → Fn is
multiplication by A.

Proposition 6.5. The function det : Fn×n → F is uniquely characterized by the
properties

(i) det is linear in each column
(ii) det is alternating in the columns (i.e. switching two gives a minus sign)
(iii) det In = 1

Proof. That the properties hold follow from the definition. That such a function is
unique can be proved using elementary column operations. □
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