
BACKGROUND ON POLYNOMIALS

JOSEPH W. IVERSON

This document contains background on polynomials, as necessary for graduate
linear algebra. We might skip some proofs in lecture, and you can find them here
instead. Our treatment is completely unoriginal to us, and it is based almost
entirely on Chapter 4 of [3]. We do not claim to improve upon [3], and any errors
that occur here are our own. Other standard references include [1, 2].

1. Polynomials and their arithmetic

We begin with the definition of a field. Our main examples will be R and C.

Definition 1. Let R be a set equipped with addition and multiplication operations
that map R×R→ R. We say R is a commutative ring with identity if it has
distinct elements 0 6= 1 for which the following axioms hold:

(A1) (a + b) + c = a + (b + c) for every a, b, c ∈ R,

(A2) a + 0 = a = 0 + a for every a ∈ R,

(A3) a + b = b + a for every a, b ∈ R,

(A4) for every a ∈ R, there exists −a ∈ R such that a + (−a) = 0,

(M1) (ab)c = a(bc) for every a, b, c ∈ R,

(M2) a1 = a = 1a for every a ∈ R,

(M3) ab = ba for every a, b ∈ R, and

(D) a(b + c) = (ab) + (ac) for every a, b, c ∈ R.

A field is a commutative ring with identity that also satisfies:

(M4) for every a ∈ R with a 6= 0, there exists a−1 ∈ R such that aa−1 = 1.

Example 2. Each of Q, R, and C is a field with its usual addition and multiplication,
but there are other, more exotic fields. For instance, if p is any prime, one can show
that Zp = {0, 1, . . . , p− 1} is a field under modular addition and multiplication.

We usually denote F for a field. In this document, we are less interested in the
field itself and more interested in its corresponding polynomials.

Definition 3. Given a field F, F[x] denotes the vector space of formal polynomials
with unknown x and coefficients in F. It has a basis consisting of formal monomials
1 = x0, x1, x2, . . . , and any nonzero f ∈ F[x] can be written uniquely as a finite
linear combination of monomials

f(x) = c0 + c1x + c2x
2 + · · ·+ cnx

n (c1, . . . , cn ∈ F)

with cn 6= 0. Here, cn is the leading coefficient of f , and f is said to have degree
deg f = n. (We do not consider the zero polynomial to have a degree.) A linear
polynomial has degree 1, and a constant (or scalar) polynomial has degree 0. A
monic polynomial has leading coefficient cn = 1.
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We emphasize that a polynomial is a formal linear combination of symbols, and
is not itself a function. However, every polynomial f ∈ F[x] determines a function
F → F in the obvious way (see Definition 9). It will turn out that the mapping of
a polynomial to its associated function is injective if and only if F is infinite. Then
for infinite fields, no trouble arises when identifying a polynomial with a function,
but for finite fields no such identification is possible.

Polynomial arithmetic is defined as expected. Specifically, given polynomials
f(x) =

∑n
i=0 aix

i and g(x) =
∑m

j=0 bjx
j , their product is

(fg)(x) =

n∑
i=0

m∑
j=0

aibjx
i+j =

m+n∑
k=0

k∑
i=0

aibk−ix
k,

where we interpret ai = 0 for i > n and bj = 0 for j > m. The sum of polynomials
is determined by the vector space structure of F[x].

Remark 4. We consider F as a subset of F[x] by identifying c ∈ F with the constant
polynomial cx0 ∈ F[x]. This does not lead to any confusion: given c ∈ F and
f ∈ F[x], we get the same thing whether we interpret cf as a product of polynomials
or as the scalar c times the vector f .

We omit the straightforward (but lengthy) proofs of the next two propositions.

Proposition 5. F[x] is a commutative ring with identity (see Definition 1).

Proposition 6. The following hold for any nonzero polynomials f, g ∈ F[x].

(a) fg 6= 0.

(b) deg(fg) = deg f + deg g.

(c) The lead coefficient of fg is the product of the lead coefficients of f and g.
In particular, if f and g are monic, then so is fg.

(d) Either f + g = 0 or else deg(f + g) ≤ max{deg f, deg g}.
As a consequence of Proposition 6(a), the multiplication in F[x] satisfies a can-

cellation law.

Proposition 7 (Cancellation). Let f ∈ F[x] be nonzero. If g, h ∈ F[x] satisfy
fg = fh, then g = h.

Proof. We have f(g − h) = 0, and so g − h = 0 by Proposition 6(a). �

It does not usually make sense to talk about a quotient of polynomials. However,
we can perform long division on polynomials to divide and leave a remainder, just
as you may have learned in middle school. That algorithm is embedded in the proof
of the following theorem, which records one of the most important features of F[x].

Theorem 8 (Division algorithm). Let f, d ∈ F[x] be polynomials with d 6= 0. Then
there exist unique polynomials q, r ∈ F[x] such that f = dq + r and either r = 0 or
else deg r < deg d.

Proof. First we establish existence. We may assume that f 6= 0 and deg d ≤ deg f ,
since otherwise we could take q = 0 and r = f . In what follows, we will repeatedly
apply the following claim: given nonzero polynomials g, h ∈ F[x] with deg g ≥ deg h,
there exists k ∈ F[x] for which g − hk is either zero or has deg(g − kh) < deg g.
Indeed, we can write

g(x) = a0 + a1x + · · ·+ amxm and h(x) = b0 + b1x + · · ·+ bnx
n
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with m = deg g ≥ deg h = n, and then we can take k(x) = am

bn
xm−n.

To begin the process, apply the claim to d and f to produce q1 ∈ F[x] for which
r1 := f − dq1 satisfies r1 = 0 or deg r1 < deg f . If r1 = 0 or deg r1 < deg d, then we
are done. Otherwise, we have deg r1 ≥ deg d, and we can apply the claim again to
produce q2 ∈ F[x] for which r2 := r1−dq2 = f−d(q1+q2) satisfies r2 = 0 or deg r2 <
deg r1. Once again, if r2 = 0 or deg r2 < deg d, then we are done, and otherwise
we repeat to find q3 and r3 := r2 − dq3 = f − d(q1 + q2 + q3). Continuing in this
way, we eventually find rk such that rk = 0 or deg rk < deg d, since the degree goes
down every time. As soon as this happens, we define r := rk = f − d(q1 + · · ·+ qk)
and q = q1 + · · ·+ qk. This proves existence.

For uniqueness, suppose we have another expression f = dq′ + r′ with r′ = 0 or
deg r′ < deg d. Then dq′ + r′ = f = dq + r, and so

(1) d(q′ − q) = r − r′.

It now suffices to prove q′ − q = 0. Suppose not. Then the left-hand side of (1) is
nonzero and has degree

deg d + deg(q′ − q) ≥ deg d,

while the right-hand side is either zero or has degree

deg(r − r′) ≤ max{deg r, deg r′} < deg d.

This is a contradiction. Therefore q′− q = 0, and (1) implies r− r′ = 0 as well. �

2. Factorization and ideals

2.1. Roots.

Definition 9. Given a polynomial f(x) = a0 + a1x + · · · + anx
n ∈ F[x] and a

constant c ∈ F, we denote

f(c) := a0 + a1c + · · ·+ anc
n ∈ F.

If f(c) = 0, then we say that c is a root (or a zero) of f .

The symbol f(c) is a slight abuse of notation since f is a polynomial and not a
function, but in practice, no confusion should arise. It is easy to check the following,
and we omit the proof.

Proposition 10. For any f, g ∈ F[x] and any c ∈ F,

(f + g)(c) = f(c) + g(c) and (fg)(c) = f(c)g(c).

Definition 11. If d, q, p ∈ F[x] and p = dq, then we say that d divides p, that d is
a factor of p, that p is divisible by d, and that p is a multiple of d. In case d 6= 0,
we also say that q = p/d is the quotient of p by d. (Note that such a quotient is
unique when it exists, by the uniqueness part of Theorem 8.)

Proposition 12. For any f ∈ F[x] and any c ∈ F, x − c is a factor of f if and
only if f(c) = 0.

Proof. Put d := x− c and apply the division algorithm to obtain f = dq+ r, where
r is the unique such remainder satisfying r = 0 or deg r = 0. In particular, r ∈ F is
a constant. Since d(c) = 0, when we evaluate at c we obtain f(c) = r. As such, d
divides f if and only if r = 0, if and only if f(c) = 0. �
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Definition 13. Let f ∈ F[x] be nonzero. The multiplicity of a scalar c ∈ F in
f is the largest integer m ≥ 0 for which (x − c)m divides f , where we interpret
(x− c)0 = 1. Thus, c is a root of f if and only if it has multiplicity at least 1 in f .
When f(c) = 0, one also says c has multiplicity m “as a root” of f .

Proposition 14. Let c ∈ F have multiplicities m and n in nonzero f, g ∈ F[x],
respectively. Then c has multiplicity m + n in fg.

Proof. Let p be the multiplicity of c in fg. Find (necessarily nonzero) quotients
h, k, q ∈ F[x] to write f(x) = (x− c)mh(x), g(x) = (x− c)nk(x), and

(x− c)pq(x) = f(x)g(x) = (x− c)m+nh(x)k(x).

Then p ≥ m + n since (x − c)m+n is a factor of f(x)g(x), and we can divide the
equation above to obtain

(2) (x− c)p−m−nq(x) = h(x)k(x).

Observe that h(c) 6= 0, since otherwise we could find h′ ∈ F[x] to write h(x) =
(x− c)h′(x), and then the multiplicity of c in f(x) = (x − c)m+1h′(x) would be
greater than m. Similarly, k(c) 6= 0. Then h(c)k(c) 6= 0, and x− c does not divide
h(x)k(x). In (2), the exponent on x− c must be 0, so p = m + n. �

Proposition 15. A nonzero polynomial of degree n has at most n distinct roots,
counting multiplicities. That is, if c1, . . . , ck ∈ F are distinct roots of nonzero
f ∈ F[x] with respective multiplicities m1, . . . ,mk ≥ 1, and if n = deg(f), then

k ≤
∑k

i=1 mi ≤ n.

Proof. To begin, find (necessarily nonzero) q1 ∈ F[x] to write f(x) = (x−c1)m1q1(x).
For each i ∈ {2, . . . , k}, ci has multiplicity mi in f(x) and 0 in (x−c1)m1 , so Propo-
sition 14 implies ci has multiplicity mi in q1(x). Then we can find nonzero q2 ∈ F[x]
to write q1(x) = (x− c2)m2q2(x) and f(x) = (x− c1)m1(x− c2)m2q2(x). As above,
c3, . . . , ck have respective multiplicities m3, . . . ,mk in q2. Then we can find nonzero
q3(x) to write q2(x) = (x− c3)m3q3(x), and so on. Continuing in this way, we even-
tually find nonzero qk ∈ F[x] for which

f(x) = (x− c1)m1 · · · (x− ck)mkqk(x).

Now take degrees of both sides to find

n = deg(qk) +

k∑
i=1

mi ≥
k∑

i=1

mi ≥ k,

as desired. �

2.2. Ideals. The following notion plays a prominent role in the theory of polyno-
mial rings.

Definition 16. An ideal of F[x] is a subset M ⊆ F[x] satisfying the following
conditions:

(I1) 0 ∈M ,

(I2) if f ∈M and g ∈M , then f + g ∈M , and

(I3) if f ∈M and g ∈ F[x] is arbitrary, then fg ∈M .
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Taking g to be a scalar in (I3), we find that every ideal is a subspace; conversely,
every subspace M that satisfies (I3) is an ideal. Notice that we consider the entire
space F[x] to be an ideal.

Example 17. Let V be a vector space over F, and let T ∈ L(V ) be an operator.
Given f(x) = c0 +c1x+ · · ·+cnx

n ∈ F[x], we define f(T ) := c0I +c1T + · · ·+cnT
n.

It is easy to check that (f+g)(T ) = f(T )+g(T ) and (fg)(T ) = f(T )g(T ) whenever
f, g ∈ F[x]. The annihilator

AnnT := {f ∈ F[x] : f(T ) = 0} ⊆ F[x]

is an ideal. Indeed, (I1) is trivially satisfied, and (I2) is easy to see. For (I3), choose
any f ∈ AnnT and g ∈ F[x], and observe that

(fg)(T ) = f(T )g(T ) = 0g(T ) = 0.

Example 18. Given any f ∈ F[x], the set

〈f〉 := {fg : g ∈ F[x]}
is easily seen to be an ideal. We call 〈f〉 the principal ideal generated by f .

Example 19. More generally, for any choice of finitely many polynomials f1, . . . , fn ∈
F[x], the set

〈f1, . . . , fn〉 := {f1g1 + · · ·+ fngn : g1, . . . , gn ∈ F[x]}
is an ideal, and it is said to be generated by f1, . . . , fn.

Remark 20. Principal ideals encode the notion of division, since d divides p if and
only if p ∈ 〈d〉. Moreover, since 〈d〉 is an ideal, it is easy to show that p ∈ 〈d〉 if
and only if 〈p〉 ⊆ 〈d〉.

In abstract algebra, an analog of Definition 16 defines ideals in any commutative
ring. For general commutative rings, the ideals can be extremely complicated.
The situation for F[x] is much nicer, and the division algorithm ensures that every
nonzero ideal of F[x] enjoys a simple description, as in the theorem below. This
will be the crucial property of polynomials for our study of operators on finite-
dimensional vector spaces.

Theorem 21 (Every nonzero ideal is principal). If M ⊆ F[x] is a nonzero ideal,
then there is a unique monic polynomial p ∈ F[x] for which M = 〈p〉.
Proof. First we establish existence. Put m := min{deg f : f ∈ M, f 6= 0}, and let
g(x) = c0 + c1x + · · ·+ cmxm ∈M have degree m. Then p = 1/cmg is monic with
degree m, and we claim that M = 〈p〉. The inclusion 〈p〉 ⊆M is satisfied since M
is an ideal and p ∈ M . In the other direction, choose any f ∈ M and apply the
division algorithm to write f = pq + r, where either r = 0 or deg r < deg p = m.
Since M is an ideal and both f and p belong to M , so does r = f − pq. From the
minimality of m, we conclude that r = 0, and therefore f = pq ∈ 〈p〉. This proves
existence.

For uniqueness, suppose p′ ∈ M is another choice of monic generator for which
M = 〈p′〉. Since p ∈ M = 〈p′〉, there exists q′ ∈ F[x] such that p = p′q′. By
Proposition 6(b) and the minimality of m, we have

m = deg p = deg p′ + deg q′ ≥ deg p′ ≥ m,

and equality holds throughout. In particular, q′ is scalar. Since p and p′ are both
monic with p = p′q′, we conclude that q′ = 1. Therefore, p′ = p. �
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Example 22. Let V be a vector space over F with finite dimension n, and let

T ∈ L(V ) be an operator. Then I = T 0, T 1, T 2, . . . , Tn2

are n2 + 1 vectors in a
vector space of dimension n2, so they enjoy a nontrivial linear dependence

0 = c0I + c1T + c2T
2 + · · ·+ cn2Tn2

= f(T ),

where f(x) =
∑n2

j=0 cjx
j ∈ F[x] is not zero. By definition, f ∈ AnnT ⊆ F[x]. In

particular, the annihilator is a nonzero ideal. The unique generator p ∈ AnnT
from Theorem 21 is called the minimal polynomial of T . From the proof of
Theorem 21, we see that p ∈ F[x] is uniquely determined by the following attributes:

(i) p(T ) = 0,
(ii) p is monic, and
(iii) deg(p) = min{deg f : f(T ) = 0}.

An important consequence of Theorem 21 is that the ideal 〈f1, . . . , fn〉 from
Example 19 can also be generated by one polynomial instead of n.

Definition 23. Given finitely many polynomials f1, . . . , fn ∈ F[x], not all of which
are zero, their greatest common divisor is the unique monic polynomial d =:
gcd(f1, . . . , fn) for which 〈f1, . . . , fn〉 = 〈d〉.

This terminology is justified by the combination of (ii)–(iii) below.

Proposition 24. If f1, . . . , fn ∈ F[x] are not all zero, then d := gcd(f1, . . . , fn)
satisfies the following:

(i) there exist g1, . . . , gn ∈ F[x] such that d = f1g1 + · · ·+ fngn,
(ii) d divides each of f1, . . . , fn, and
(iii) any other polynomial p that divides each of f1, . . . , fn also divides d.

Furthermore, if d′ is any monic polynomial that satisfies either (i)–(ii) or (ii)–(iii),
then d′ = gcd(f1, . . . , fn).

Proof. First we prove (i)–(iii). Recall that d is the unique monic polynomial for
which 〈f1, . . . , fn〉 = 〈d〉. With this in mind, (i) holds since d ∈ 〈f1, . . . , fn〉, and
(ii) holds since each fj ∈ 〈d〉. For (iii), choose h1, . . . , hn such that fj = phj for
each j ∈ [n], and use (i) to write

d = ph1g1 + · · ·+ phngn = p(h1g1 + · · ·+ hngn).

This gives (iii).
For the uniqueness statements, let d′ ∈ F[x] be monic and divide each of f1, . . . , fn,

as in (ii). We will show that d′ = gcd(f1, . . . , fn) if it satisfies either (i) or (iii) with
d suitably replaced by d′. First, we show that 〈f1, . . . , fn〉 ⊆ 〈d′〉. Indeed, choose
h1, . . . , hn ∈ F[x] such that fj = d′hj for each j ∈ [n]. Given any p ∈ 〈f1, . . . , fn〉,
there exist k1, . . . , kn ∈ F[x] to write

p = f1h1 + · · ·+ fnhn = d′k1h1 + · · ·+ d′knhn = d′(k1h1 + · · ·+ knhn).

As such, p ∈ 〈d′〉, as desired. If (i) holds for d′, then d′ ∈ 〈f1, . . . , fn〉, and since the
latter is an ideal it follows easily that 〈d′〉 ⊆ 〈f1, . . . , fn〉. Similarly, if (iii) holds for
d′, then in particular d = gcd(f1, . . . , fn) divides d′, so that d′ ∈ 〈d〉 = 〈f1, . . . , fn〉
and 〈d′〉 ⊆ 〈f1, . . . , fn〉. Overall, if either (i) or (iii) holds, then 〈d〉 = 〈d′〉, and the
uniqueness in Theorem 21 implies that d′ = d. �

Definition 25. Let f1, . . . , fn ∈ F[x] be not all zero. We say they are relatively
prime, or coprime, if gcd(f1, . . . , fn) = 1. Equivalently, 〈f1, . . . , fn〉 = F[x].
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Since 1 divides everything, Proposition 24 implies that f1, . . . , fn are relatively
prime if and only if there exist g1, . . . , gn ∈ F[x] for which f1g1 + · · ·+ fngn = 1.

2.3. Prime factorization. By this point, you may have noticed how closely our
language surrounding divisibility mirrors the situation in Z. In that setting, there
is a straightforward way to find the greatest common divisor of any collection
of integers: find their prime factorizations, and collect everything they have in
common. Next, we develop the analogous technology for polynomials.

Definition 26. A polynomial f ∈ F[x] is reducible over F if there exist nonzero
g, h ∈ F[x] both having degree at least 1 such that f = gh. If there are no such g
and h, then f is irreducible over F. A prime in F[x] is an irreducible polynomial
in F that is not a scalar.

Example 27. Every linear polynomial f(x) = a(x− c) is irreducible, since if g, h ∈
F[x] are polynomials with degrees at least 1, then deg(gh) ≥ 2 implies gh 6= f .

Example 28. A polynomial f ∈ F[x] of degree two is reducible in F[x] if and only if it
has a root in F. This is a consequence of Proposition 12. Explicitly, if f is reducible
in F[x] and f = gh with deg g,deg h ≥ 1, then we can factor out a constant from
gh to write f(x) = c(x − a)(x − b) for some a, b, c ∈ F. Then a, b ∈ F are roots
of f . Conversely, if a ∈ F is a root of f , then Proposition 12 gives a factorization
f(x) = (x − a)h(x) for some h ∈ F[x], and since deg f = 2 we conclude that
deg h = 1. Therefore, f is reducible in F[x].

Example 29. Irreducibility of a polynomial depends on the ambient field F. For
example, the polynomial f(x) = x2 + 1 is irreducible in R[x] because it is has no
roots in R. But in the larger field C, it has roots ±i, so it is reducible in C[x].
Explicitly, f(x) = (x− i)(x + i).

Theorem 30. If f1, . . . , fn ∈ F[x] are polynomials and p ∈ F[x] is a prime that
divides f1 · · · fn, then p divides at least one of f1, . . . , fn.

Proof. We prove the case n = 2, and the general case follows by induction on n.
Suppose p is a prime that divides f1f2 but does not divide f1. We must prove
that p divides f2. After replacing p by a suitable scalar multiple, we may assume
it is monic. In that case, the only monic polynomials that divide p are 1 and p
itself. In particular, d := gcd(p, f1) is either p or 1, and since p does not divide
f1, we conclude that d = 1. Apply Proposition 24(i) to write 1 = gp + hf1 with
g, h ∈ F[x]. Multiplying both sides by f2, we find f2 = gpf2 + hf1f2. In this
expression, p divides the right-hand side since it divides f1f2. Therefore, p divides
f2. �

Theorem 31 (Prime factorization). Each nonscalar monic polynomial f ∈ F[x]
can be factored as a product of monic primes f = p1 · · · pn, and this factorization
is unique up to reordering the factors p1, . . . , pn.

Proof. We proceed by induction on deg f . In the base case deg f = 1, f(x) = x− c
is already prime, and by considering degrees it is easy to see that f = f is its only
factorization into monic primes. Now suppose deg f = n ≥ 2, and that we proved
the theorem for all polynomials of degree at most n− 1.

First we prove existence. If f is irreducible, then it is already prime, and f = f is
a factorization. If f is reducible, choose a factorization f = gh with deg g,deg h ≥ 1.
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Then g and h each have degree less than n, and after scaling both if necessary, we
can assume they are monic. By the inductive hypothesis, each of g and h factors
as a product of monic primes, and combining gives a factorization for f .

Now we prove uniqueness. Suppose we have two factorizations

f = p1 · · · pm = q1 · · · qk
with every pi, qj ∈ F[x] a monic prime. Then

(3) n = deg f =

m∑
i=1

deg pi =

k∑
j=1

deg gj ,

and in particular, m, k ≥ 1. Since pm divides q1 · · · qk, it must divide some qj .
Furthermore, since pm and qj are both monic primes, they must be equal. After
rearranging the q’s if necessary, we may assume that pm = qk. If either m or k
equals 1, then (3) implies they both equal 1, in which case we are done. Now
assume m, k ≥ 2. Then (p1 · · · pm−1)pm = (q1 · · · qk−1)pm, and by the cancellation
property Proposition 7, we conclude that

p1 · · · pm−1 = q1 · · · qk−1 =: g,

where deg g = deg f −deg pm ≤ n− 1. By the inductive hypothesis, g has a unique
factorization into monic primes up to reordering. As such, m − 1 = k − 1 and
the list q1, . . . , qk−1 can be reordered to obtain p1, . . . , pm−1. Adding the factor
qk = pm back into these lists, we conclude that our two factorizations for f agree
up to reordering. �

Remark 32. Let f be a monic prime with deg f ≥ 1. In the factorization of f
into monic primes from Theorem 31, some of the factors may be repeated. Group-
ing them together, we obtain the primary decomposition f = pn1

1 · · · pnr
r with

p1, . . . , pr distinct monic primes. This factorization is also unique up to reordering,
and each p

nj

j is called a primary factor of f .
Primary decompositions determine divisibility. If g is another nonscalar monic

polynomial, then g divides f if and only if g = pm1
1 · · · pmr

r with 0 ≤ mj ≤ nj for
each j ∈ [r], if and only if every primary factor of g divides a primary factor of f
(i.e., it has the same prime base pj as some primary factor of f , and its exponent
in the factorization of g is no larger than its exponent in the factorization of f).

This makes it easy to find the greatest common divisor of monic polynomials
when their primary factorizations are known. If f1, . . . , fn are nonscalar monic
polynomials, then the primary decomposition of gcd(f1, . . . , fn) is obtained by col-
lecting all the distinct primes that occur in the factorizations of f1, . . . , fn, and rais-
ing each to the highest power that divides all of f1, . . . , fn. In particular, f1, . . . , fn
are relatively prime if and only if there is no prime that appears in all of their pri-
mary decompositions. This implies the following result, which we will find useful
in lecture.

Corollary 33. Let f ∈ F[x] be a nonscalar monic polynomial with primary decom-
position f = pn1

1 · · · pnr
r . For each j ∈ [r], define fj = f/p

nj

j =
∏

i 6=j p
ni
i . Then

f1, . . . , fr are relatively prime.

Example 34. The Fundamental Theorem of Algebra states that every prime polyno-
mial in C[x] is linear. As such, the primary decomposition of any nonscalar monic
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polynomial f ∈ C[x] takes the form

f(x) = (x− c1)n1 · · · (x− cr)nr ,

where c1, . . . , cr ∈ C are distinct roots of f . As a consequence of Theorem 31, non-
scalar polynomials are relatively prime in C[x] if and only if they have no common
root. Corollary 33 states that this holds in particular for the polynomials f1, . . . , fr
given by fj(x) = f(x)/(x− ci)

ni =
∏

i6=j(x− ci)
ni .

Example 35. The Fundamental Theorem of Algebra also implies a characterization
of primes in R[x]. Let f(x) ∈ R[x] be a nonscalar monic polynomial. When viewed
as a polynomial in C[x], it factors as

f(x) = (x− c1)n1 · · · (x− cr)nr ,

with c1, . . . , cr ∈ C. Applying complex conjugation to the left-hand side does
nothing since f(x) ∈ R[x], and when we apply it on the right-hand side we find

f(x) = (x− c1)n1 · · · (x− cr)nr .

By uniqueness of prime factorizations in C[x], we conclude that the roots c1, . . . , cr ∈
C come in conjugate pairs. For every non-real root cj ∈ C, (x − cj)(x − cj) =
x2 − (cj + cj)x + |cj |2 has real coefficients. As such, combining non-real linear
factors of f(x) with their complex conjugates produces a factorization

f(x) = (x2 + a1x + b1) · · · (x2 + amx + bm)(x− d1) · · · (x− dn)

with every factor in R[x]. In case f is prime, we deduce that every prime monic in
R[x] takes the form x2 + ax + b or x − d with a, b, d ∈ R, where the quadratic is
prime if and only if it has no roots in R. Consequently, the primary decomposition
of a nonscalar monic polynomial f ∈ R[x] takes the form

f(x) = (x2 + a1x + b1)n1 · · · (x2 + akx + bk)nk(x− d1)m1 · · · (x− dr)mr

where the base factors x2 + aix + bi and x− dj are distinct real polynomials, and
a2i − 4bi < 0 for every i ∈ [k].
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