MATH 510 Practice Problems for Final Exam

1. Let V be an n-dimensional vector space over a field \mathbb{F}. Let $T: V \rightarrow V$ be a linear map of rank $n-1$. Show that there is an ordered basis \mathcal{B} for V such that the matrix $A=[T]_{\mathcal{B}}$ has the form

$$
A=\left[\begin{array}{ll}
A^{\prime} & 0 \\
u^{T} & 0
\end{array}\right]
$$

for some invertible $A^{\prime} \in M_{n-1}$ and some $u \in \mathbb{F}^{n-1}$ (and $\mathbf{0} \in \mathbb{F}^{n-1}$).
2. Let V be vector space. Suppose $P_{1}, \ldots, P_{m}: V \rightarrow V$ are linear maps satisfying (i) $P_{j}^{2}=P_{j}$, (ii) $P_{j} P_{k}=0$ for $j \neq k$, (iii) $\sum_{j} P_{j}=\operatorname{Id}_{V}$. (The P_{j} are said to form a complete set of mutually orthogonal projections.)
(a) Show that $V=\oplus_{j=1}^{m} V_{j}$, where $V_{j}=P_{j}(V)$.
(b) Conversely, show that if $V=\oplus_{j=1}^{m} V_{j}$ for some subspaces V_{j}, then there are linear maps P_{j} satisfying (i)-(iii) such that $V_{j}=P(V)$.
(c) Lastly, if V is an inner product space, show the P_{j} are Hermitian if and only if $V_{j} \perp V_{k}$ for all $j \neq k$. (Here Hermitian means $\left\langle P_{j} v, w\right\rangle=$ $\left\langle v, P_{j} w\right\rangle$ for all $v, w \in V$.)
3. Let V be an n-dimensional vector space over a field \mathbb{F}. Let $\left\{v_{i}\right\}_{i=1}^{n}$ and $\left\{v_{i}^{\prime}\right\}_{i=1}^{n}$ be two bases for V and let $\left\{\xi_{i}\right\}_{i=1}^{n},\left\{\xi_{i}^{\prime}\right\}_{i=1}^{n}$ be the corresponding dual bases for V^{*}. Show that in $V^{*} \otimes V$ we have $\sum_{i=1}^{n} \xi_{i} \otimes v_{i}=\sum_{i=1}^{n} \xi_{i}^{\prime} \otimes v_{i}^{\prime}$.
4. Let $\|\cdot\|$ be any vector norm on $M_{n}(\mathbb{C})$. Define $\|\cdot\| \|$ by $\|A\|=\max _{\|B\|=1}\|A B\|$. Show that $\left\|\|\cdot\|\right.$ is a matrix norm on $M_{n}(\mathbb{C})$.
5. Let V be a finite-dimensional vector space over \mathbb{R} and let $\omega: V \times V \rightarrow \mathbb{R}$ be a non-degenerate bilinear form. Show that $\operatorname{dim} V$ is even and there is a basis $\left\{v_{i}\right\}_{i}$ for V such that

$$
\omega\left(v_{i}, v_{j}\right)= \begin{cases}1, & i \text { is odd and } j=i+1 \\ -1 & j \text { is odd and } i=j+1 \\ 0 & \text { otherwise }\end{cases}
$$

6. Let $A, B \in M_{n}(\mathbb{C})$. If B is nilpotent and commute with A, show that A and $A+B$ have the same characteristic polynomial.

MATH 510 Practice Problems for Final Exam

7. Let $A \in M_{n}(\mathbb{C})$ and $\lambda \in \mathbb{C}$. Show the following are equivalent: 1) the minimum polynomial of A is $(x-\lambda)^{d}$ for some positive integer d. 2) $\lim _{k \rightarrow \infty} A^{k}-\lambda^{k} I=0$.
8. If A has invariant factors

$$
\left\{1, x+1,(x+1)^{2}(x-2),(x+1)^{3}(x-2)\right\}
$$

find the Jordan normal form of A.
9. If A is a real 8×8 matrix and has minimum polynomial

$$
m(x)=\left(x^{2}+1\right)^{2}(x-3)^{2}
$$

find the possible real Jordan canonical forms of A.
10. Show that any positive definite matrix P may be factored as $P=L L^{*}$ where L is a lower-triangular matrix with positive real positive diagonal entries. Show that L is uniquely determined by P.
11. For $A \in M_{n}(\mathbb{C})$, let $G(A)$ be the union of all (closed) Geršgorin disks of A. Show that $\bigcap_{S} G\left(S A S^{-1}\right)=\sigma(A)$ where the intersection is taken over all nonsingular matrices S. What if we restrict to only unitary S ?
12. Let $A, B \in M_{n}(\mathbb{C})$ be Hermitian. Suppose that all eigenvalues of $A-B$ are non-negative. Show that $\lambda_{k}(A) \geqslant \lambda_{k}(B)$ for all $k=1,2, \ldots, n$ (where $\lambda_{1}(X) \leqslant \cdots \leqslant \lambda_{n}(X)$ denote the eigenvalues of a Hermitian matrix $\left.X\right)$.
13. Let $A \in M_{n}$ and $A=V \Sigma W^{*}$ a singular value decomposition. Let $\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)=\Sigma$. Let v_{i} be the columns of V and w_{i} the columns of W. Show that $A^{*} A w_{i}=\sigma_{i}^{2} w_{i}$ and $A A^{*} v_{i}=\sigma_{i}^{2} v_{i}$ for all $i=1,2, \ldots, n$. Formulate and prove a converse of this statement.

