- Due April 26 at the beginning of class.

1. Suppose that $A \in M_{n}$ is a real matrix whose n Gershgorin disks are all mutually disjoint. Show that all eigenvalues of A are real.
2. Suppose that $A \in M_{n}$ is idempotent $\left(A^{2}=A\right)$ but $A \neq I$. Show that A cannot be strictly diagonally dominant. (A is called strictly diagonally dominant if $\left|a_{i i}\right|>\sum_{\substack{1 \leq j \leq n \\ j \neq i}}\left|a_{i j}\right|$ for all $i=1,2, \ldots, n$.)
3. Let $A \in M_{n}(\{0,1\})$ be a matrix whose entries are either 0 or 1 . Show that A has property (SC) (equivalently, its directed graph $\Gamma(A)$ is strongly connected) if and only if every entry of the matrix $(I+A)^{n-1}$ is positive. (You may use that the i, j entry of A^{k} is the number of paths in $\Gamma(A)$ from i to j of length k.)
4. Let $A \in M_{n}$ be a skew-Hermitian matrix. For each $\varepsilon \in \mathbb{R}$, let $A_{\varepsilon}=$ $\exp (\varepsilon A)$ and let λ_{ε} be an eigenvalue of A_{ε}. Show that

$$
\limsup _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left|\lambda_{\varepsilon}-1\right| \leq\|A\|_{\infty}
$$

where $\|A\|_{\infty}=\max _{p} \sum_{j}\left|a_{p j}\right|$ is the max-row-sum matrix norm.
5. What are necessary and sufficient conditions on the signs of its minors for a Hermitian matrix A to be negative definite (semidefinite)? (Hint: This is related to Sylvester's Criterion.)

