- Due April 12 at the beginning of class.

1. If $A \in M_{n}$ is Hermitian, show that the following three optimization problems all have the same solution:
(a) $\max _{x^{*} x=1} x^{*} A x$
(b) $\max _{x^{*} x \neq 0} \frac{x^{*} A x}{x^{*} x}$
(c) $\max _{x^{*} A x=1} \frac{1}{x^{*} x}$ when at least one eigenvalue of A is positive
2. Let $A \in M_{n}$ have eigenvalues $\left\{\lambda_{i}\right\}$. Show that, even if A is not Hermitian, one has the bounds

$$
\min _{x \neq 0}\left|\frac{x^{*} A x}{x^{*} x}\right| \leq\left|l a_{i}\right| \leq \max _{x \neq 0}\left|\frac{x^{*} A x}{x^{*} x}\right|
$$

3. Use Weyl's Theorem to show that for Hermitian matrices $A, B \in M_{n}$ one has

$$
\left|\lambda_{k}(A+B)-\lambda_{k}(A)\right| \leq \rho(B), \quad \forall k=1,2, \ldots, n
$$

(This is an example of a pertubation theorem for the eigenvalues of a Hermitian matrix.)
4. A hyperellipsoid in \mathbb{R}^{m} with radii $a_{1}, \ldots, a_{m}>0$ is an image of the set

$$
E:=\left\{\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{R}^{m}: \frac{z_{1}^{2}}{a_{1}^{2}}+\cdots+\frac{z_{m}^{2}}{a_{m}^{2}}=1\right\}
$$

under an orthogonal transformation. A solid hyperellipsoid with radii $a_{1}, \ldots, a_{m}>0$ is an image of the set

$$
B:=\left\{\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{R}^{m}: \frac{z_{1}^{2}}{a_{1}^{2}}+\cdots+\frac{z_{m}^{2}}{a_{m}^{2}} \leq 1\right\}
$$

under an orthogonal transformation. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a surjective linear transformation. Prove that the image of the unit sphere

$$
S:=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\} \subseteq \mathbb{R}^{n}
$$

under T is either a hyperellipsoid (if T is injective) or a solid hyperellipsoid (if T is not injective).
5. Let $A \in M_{n}$ be Hermitian. Let $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ be the eigenvalues of A, and $\lambda_{i, 1} \leq \lambda_{i, 2} \leq \cdots \leq \lambda_{i, n-1}$ the eigenvalues of the $(n-1) \times(n-1)$ principal submatrix $A i^{\prime}$ obtained from A by deleting the i :th column and i :th row. Show that the following interlacing inequalities hold:

