- Due April 12 at the beginning of class.
- 1. If $A \in M_n$ is Hermitian, show that the following three optimization problems all have the same solution:

2. Let $A \in M_n$ have eigenvalues $\{\lambda_i\}$. Show that, even if A is not Hermitian, one has the bounds

$$\min_{x \neq 0} \left| \frac{x^* A x}{x^* x} \right| \le |la_i| \le \max_{x \neq 0} \left| \frac{x^* A x}{x^* x} \right|$$

3. Use Weyl's Theorem to show that for Hermitian matrices $A, B \in M_n$ one has

 $|\lambda_k(A+B) - \lambda_k(A)| \le \rho(B), \qquad \forall k = 1, 2, \dots, n.$

(This is an example of a *pertubation theorem* for the eigenvalues of a Hermitian matrix.)

4. A hyperellipsoid in \mathbb{R}^m with radii $a_1, \ldots, a_m > 0$ is an image of the set

$$E := \left\{ (z_1, \dots, z_m) \in \mathbb{R}^m : \frac{z_1^2}{a_1^2} + \dots + \frac{z_m^2}{a_m^2} = 1 \right\}$$

under an orthogonal transformation. A solid hyperellipsoid with radii $a_1, \ldots, a_m > 0$ is an image of the set

$$B := \left\{ (z_1, \dots, z_m) \in \mathbb{R}^m : \frac{z_1^2}{a_1^2} + \dots + \frac{z_m^2}{a_m^2} \le 1 \right\}$$

under an orthogonal transformation. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a *surjective* linear transformation. Prove that the image of the unit sphere

$$S := \{ x \in \mathbb{R}^n : ||x|| = 1 \} \subseteq \mathbb{R}^n$$

under T is either a hyperellipsoid (if T is injective) or a solid hyperellipsoid (if T is not injective).

MATH 510 Homework 8	Name:
---------------------	-------

5. Let $A \in M_n$ be Hermitian. Let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ be the eigenvalues of A, and $\lambda_{i,1} \leq \lambda_{i,2} \leq \cdots \leq \lambda_{i,n-1}$ the eigenvalues of the $(n-1) \times (n-1)$ principal submatrix Ai' obtained from A by deleting the *i*:th column and *i*:th row. Show that the following interlacing inequalities hold: