- Homework 7 is due March 29 at the beginning of class.

1. Let $\|\cdot\|$ be a norm (i.e. a "vector norm" as the book calls it) on \mathbb{C}^{n}. Let $T \in M_{n}(\mathbb{C})$. Let $\|\cdot\|_{T}$ be the norm given by $\|x\|_{T}=\|T x\|$. Show that if T is an isometry with respect to $\|x\|$, then $\|\cdot\|^{\mathrm{D}}=\left(\|\cdot\|_{T}\right)^{\mathrm{D}}$, where $f(\cdot)^{D}$ denotes the dual norm of a (pre-)norm $f(\cdot)$.
2. Show that if $x, y \in \mathbb{C}^{n}$ then $\|y\|_{\infty}=\max _{\|x\|_{1}=1}\left|y^{*} x\right|$ and $\|y\|_{1}=\max _{\|x\|_{\infty}=1}\left|y^{*} x\right|$.
3. Prove that a norm $\|\cdot\|$ on a vector space V over \mathbb{R} (same is true for \mathbb{C} but requires an extra step) is derived from an inner product $\langle\cdot, \cdot\rangle$ (in the sense that $\|x\|=\sqrt{\langle x, x\rangle}$ for all $x \in V)$ if and only if $\|\cdot\|$ satisfies the parallelogram identity

$$
\frac{1}{2}\left(\|x+y\|^{2}+\|x-y\|^{2}\right)=\|x\|^{2}+\|y\|^{2}, \quad \forall x, y \in V
$$

Hint: When $\|\cdot\|$ is derived from an inner product, $\langle x, y\rangle$ can be expressed in terms of $\|x+y\|,\|x\|$, and $\|y\|$. For the \Leftarrow direction, use that formula as the definition of $\langle x, y\rangle$. To show additivity, use the parallelogram identity. For homogeneity $\langle\lambda x, y\rangle=\lambda\langle x, y\rangle$, first show it for $\lambda \in \mathbb{Z}$, then for $\lambda \in \mathbb{Q}$. Use Cauchy-Schwarz and a continuity argument for the general case $\lambda \in \mathbb{R}$.
4. Let $A \in M_{n}$ be a non-singular matrix such that the upper left $k \times k$ submatrix is singular (i.e. the leading principal $k \times k$-minor is zero) for some $k \in\{1,2, \ldots, n-1\}$. Show that A cannot be factored as $L U$ where $L \in M_{n}$ is a lower-triangular matrix and $U \in M_{n}$ is an upper-triangular matrix. (Hint: Start with small k and arbitrary n to see what happens.)
5. Against better judgement, call two matrices $A, B \in M_{m, n}$ equivalent if there are non-singular matrices $S \in M_{m}$ and $T \in M_{n}$ such that $B=S A T$.
(a) Show that every matrix $A \in M_{m, n}$ is equivalent to a matrix of the form $\left[\begin{array}{cc}I_{k} & 0 \\ 0 & 0\end{array}\right]$ where $k \leq \min \{m, n\}$ and 0 are appropriately sized zero matrices. (Hint: Use that row and column operations can be performed using matrix multiplication by elementary matrices and use induction. Alternatively, find appropriate bases for $\mathbb{C}^{m}, \mathbb{C}^{n}$.)
(b) Show that two matrices in $M_{m, n}$ are equivalent if and only if they have the same rank.

