- Homework 6 is due March 22 at the beginning of class.

1. (Corrected March 13) Let $A \in M_{n}(\mathbb{C})$. Let $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{C}^{n}$ be the columns of A. Prove Hadamard's inequality: $|\operatorname{det} A| \leq \prod_{i=1}^{n}\left\|a_{i}\right\|$ with equality if and only if A has orthogonal columns or $a_{i}=0$ for some i. Hint: Use the QR factorization of A.
2. Let $A \in M_{n}(\mathbb{R})$ be given. Explain why A is symmetric if and only if A is normal and all its eigenvalues are real.
3. Let $A \in M_{n}(\mathbb{R})$ be a real normal matrix. If $A A^{T}$ has n distinct eigenvalues, show that A is symmetric.
4. (a) Show that any real orthogonal matrix has determinant 1 or -1 .
(b) Let $A \in M_{n}(\mathbb{R})$ be a real orthogonal matrix such that $\operatorname{det}(A)=1$. Show that there is a continuous function $\gamma:[0,1] \rightarrow O(n)$ such that $\gamma(0)=A$ and $\gamma(1)=I_{n}$. (That such a function is continuous means that $\gamma(t)=\left[B_{i j}(t)\right] \in M_{n}(\mathbb{R})$ for some continuous functions $B_{i j}(t)$.) (Hint: Use the spectral theorem for real normal matrices.)
5. Show that any $B \in M_{n}(\mathbb{C})$ of the form $B=A^{*} A, A \in M_{n}(\mathbb{C})$ may be written $B=L L^{*}$, where $L \in M_{n}(\mathbb{C})$ is lower triangular and has real nonnegative diagonal entries. Explain why this factorization is unique if A is nonsingular.
