- Homework 5 is due March 8 at the beginning of class.
- Problem 5 corrected on March 3, 7pm

1. A permutation matrix is an $n \times n$ matrix in which each column and each row has exactly one non-zero entry, and that entry equals 1 . Show that the set of permutation matrices is a subgroup of the group $O(n)$ of real orthogonal matrices. (Subgroup here means a subset which is closed under multiplication, inverses, and contains identity matrix.)
2. Show that if $A \in M_{n}(\mathbb{C})$ is similar to a unitary matrix, then $A=B^{-1} B^{*}$ for some nonsingular B.
3. Show that the set of matrices that are similar to unitary matrices is a proper subset of the set of matrices for which A^{-1} is similar to A^{*}. Hint: Consider the matrix $\operatorname{diag}\left(2, \frac{1}{2}\right)$.
4. Let A, B be commuting matrices with eigenvalues $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ and $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ respectively. If $p(t, s)$ is a polynomial in two variables, show that $p(A, B)$ has eigenvalues $p\left(\alpha_{1}, \beta_{i_{1}}\right), p\left(\alpha_{2}, \beta_{i_{2}}\right), \ldots, p\left(\alpha_{n}, \beta_{i_{n}}\right)$ for some permutation $\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ of $(1,2, \ldots, n)$.
5. Let $A \in M_{n}(\mathbb{C})$ be a matrix such that $\operatorname{Tr}\left(A^{k}\right)=0$ for all $k \geq 1$. Show that A is nilpotent. Hint: You may use that the elementary symmetric polynomials

$$
e_{d}=\sum_{1 \leq i_{1}<i_{2}<\ldots<i_{d} \leq n} \lambda_{i_{1}} \lambda_{i_{2}} \cdots \lambda_{i_{d}}
$$

are polynomials in the power sums $p_{d}=\sum_{i=1}^{n} \lambda_{i}^{d}$.

