- Homework 4 is due February 16 at the beginning of class.
- Write the problem statement followed by a proof or solution.
- List problems in the same order they were given.
- If you skip a problem, include the problem statement with no solution.
- 1. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear operator whose matrix in the standard ordered basis of \mathbb{R}^2 is

$$A = \begin{bmatrix} 1 & -1 \\ 2 & 2 \end{bmatrix}.$$

- (a) Prove that the only subspaces of \mathbb{R}^2 invariant under T are \mathbb{R}^2 and the zero subspace.
- (b) Let $U : \mathbb{C}^2 \to \mathbb{C}^2$ be the linear map whose matrix in the standard ordered basis of \mathbb{C}^2 is A. Show that U does have 1-dimensional invariant subspaces.
- 2. Let V be a finite-dimensional vector space and W be an invariant subspace for a linear map $T: V \to V$. Prove that the minimal polynomial for the restricted linear map $T|_W: W \to W$ divides the minimal polynomial for T.
- 3. Let V be the space of $n \times n$ -matrices over a field \mathbb{F} , and let A be a fixed $n \times n$ -matrix over \mathbb{F} . Define a linear operator T on V by T(B) = AB BA. Prove that if A is a nilpotent matrix, then T is a nilpotent operator.
- 4. Let V be a finite-dimensional vector space and let $T, S \in \text{End}(V)$ be commuting linear maps. Suppose there are ordered bases \mathcal{B} and \mathcal{C} for V such that $[T]_{\mathcal{B}}$ and $[S]_{\mathcal{C}}$ are diagonal. Show that there is an ordered basis \mathcal{D} for V such that $[T]_{\mathcal{D}}$ and $[S]_{\mathcal{D}}$ are diagonal.
- 5. Let A be an $n \times n$ -matrix with real entries such that $A^2 + I = 0$. Prove that n = 2k for some k > 0, and that furthermore A is similar to a matrix of the block form

$$\begin{bmatrix} 0_k & -I_k \\ I_k & 0_k \end{bmatrix}.$$