- Homework 4 is due February 16 at the beginning of class.
- Write the problem statement followed by a proof or solution.
- List problems in the same order they were given.
- If you skip a problem, include the problem statement with no solution.

1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear operator whose matrix in the standard ordered basis of \mathbb{R}^{2} is

$$
A=\left[\begin{array}{cc}
1 & -1 \\
2 & 2
\end{array}\right]
$$

(a) Prove that the only subspaces of \mathbb{R}^{2} invariant under T are \mathbb{R}^{2} and the zero subspace.
(b) Let $U: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ be the linear map whose matrix in the standard ordered basis of \mathbb{C}^{2} is A. Show that U does have 1-dimensional invariant subspaces.
2. Let V be a finite-dimensional vector space and W be an invariant subspace for a linear map $T: V \rightarrow V$. Prove that the minimal polynomial for the restricted linear map $\left.T\right|_{W}: W \rightarrow W$ divides the minimal polynomial for T.
3. Let V be the space of $n \times n$-matrices over a field \mathbb{F}, and let A be a fixed $n \times n$-matrix over \mathbb{F}. Define a linear operator T on V by $T(B)=A B-B A$. Prove that if A is a nilpotent matrix, then T is a nilpotent operator.
4. Let V be a finite-dimensional vector space and let $T, S \in \operatorname{End}(V)$ be commuting linear maps. Suppose there are ordered bases \mathcal{B} and \mathcal{C} for V such that $[T]_{\mathcal{B}}$ and $[S]_{\mathcal{C}}$ are diagonal. Show that there is an ordered basis \mathcal{D} for V such that $[T]_{\mathcal{D}}$ and $[S]_{\mathcal{D}}$ are diagonal.
5. Let A be an $n \times n$-matrix with real entries such that $A^{2}+I=0$. Prove that $n=2 k$ for some $k>0$, and that furthermore A is similar to a matrix of the block form

$$
\left[\begin{array}{cc}
0_{k} & -I_{k} \\
I_{k} & 0_{k}
\end{array}\right] .
$$

