- Homework 3 is due February 9 at the beginning of class.
- Write the problem statement followed by a proof or solution.
- List problems in the same order they were given.
- If you skip a problem, include the problem statement with no solution.

1. Prove the Second Isomorphism Theorem for vector spaces, stating that if V is a vector space and $U, W \leq V$, then

$$
(U+W) / W \cong U /(U \cap W)
$$

(You may assume V is finite-dimensional if you wish.)
2. Let V be a vector space over a field \mathbb{F}. The dual space of V is defined to be

$$
V^{*}=\operatorname{Hom}(V, \mathbb{F})
$$

(a) Define a function $\beta: V^{*} \times W \rightarrow \operatorname{Hom}(V, W)$ by $\beta(\xi, w)(v)=\xi(v) w$. Show β is bilinear, hence induces a linear map

$$
B: V^{*} \otimes W \rightarrow \operatorname{Hom}(V, W)
$$

satisfying $B(\xi \otimes w)(v)=\xi(v) w$ for all $\xi \in V^{*}, w \in W, v \in V$.
(b) Show that the map B is injective. (Hint: Choose bases.)
(c) Show that the image of B consists of all linear maps $T: V \rightarrow W$ of finite rank. (Hint: For \supseteq, choose a basis for $T(V)$.)
3. Let V be a (finite-dimensional, if you wish) vector space. Define $V^{\otimes k}$ for $k>0$ recursively by $V^{\otimes 1}=V$ and $V^{\otimes k}=V^{\otimes(k-1)} \otimes V$ for $k>0$. We put $v_{1} \otimes v_{2} \otimes v_{3}=\left(v_{1} \otimes v_{2}\right) \otimes v_{3}$ and similarly with more factors. Let J_{k} be the subspace of $V^{\otimes k}$ spanned by all vectors $v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}$ where $v_{1}, v_{2}, \ldots, v_{k} \in V$ and $v_{i}=v_{j}$ for some $i \neq j$. The $k:$ th exterior power of V is defined as

$$
\wedge^{k} V=V^{\otimes k} / J_{k}
$$

Notation: $v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}=v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}+J_{k}$.
(a) If $T: V \rightarrow V$ is a linear map, show that $T^{\otimes k}: V^{\otimes k} \rightarrow V^{\otimes k}$ (defined recursively by $T^{\otimes 1}=T, T^{\otimes s}=T^{\otimes(s-1)} \otimes T$ for $s>0$) leaves the subspace J_{k} invariant. Conclude that there is an induced linear map $\wedge^{k} T: \wedge^{k} V \rightarrow \wedge^{k} V$.
(b) If $\operatorname{dim} V=n$, show that $\operatorname{dim} \wedge^{k} V=\binom{n}{k}$. (Hint: By bilinearity, $(u+v) \otimes$ $(u+v) \in J_{2}$ implies that $u \wedge v+v \wedge u=0$.)
(c) Take $V=\mathbb{F}^{2}$ and $T=T_{A}$ for an arbitrary $A \in \mathbb{F}^{2 \times 2}$. Find the matrix of $\wedge^{2} T$ with respect to the basis $\left\{e_{1} \wedge e_{2}\right\}$.
4. Let $A \in \mathbb{F}^{m \times n}$ and $B \in \mathbb{F}^{s \times t}$ be matrices. Let $A \otimes B$ be the Kronecker product of the matrices. Prove that $\operatorname{rank}(A \otimes B)=(\operatorname{rank} A)(\operatorname{rank} B)$.
5. The trace of a square matrix $A=\left[A_{i j}\right] \in \mathbb{F}^{n \times n}$ is $\operatorname{Tr} A=\sum_{i} A_{i i} \in \mathbb{F}$ (sum of the diagonal elements). Show that if $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$ then $\operatorname{Tr}(A \otimes B)=(\operatorname{Tr} A)(\operatorname{Tr} B)$.

