- Homework 2 is due February 2 at beginning of class.
- Write the problem statement followed by a proof or solution.
- List problems in the same order they were given.
- If you skip a problem, include the problem statement with no solution.

Corrected on Jan 28, 6:30pm: Problem 1(a) should say \subseteq, not $=$. In Problem 5, assume $n>1$ (or interpret $[0]^{0}=[1]$).

1. Let \mathbb{F} be an arbitrary field, and let $A_{1}, \ldots, A_{k} \in \mathbb{F}^{m \times n}$ be matrices.
(a) Show that $\operatorname{im}\left(A_{1}+\cdots+A_{k}\right) \subseteq \operatorname{im} A_{1}+\cdots+\operatorname{im} A_{k}$, as a sum of subspaces.
(b) Show that $\operatorname{rank}\left(A_{1}+\cdots+A_{k}\right) \leq \operatorname{rank} A_{1}+\cdots+\operatorname{rank} A_{k}$.
2. Let V and W be finite-dimensional vector spaces with ordered bases $\mathcal{B}=$ $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ and $\mathcal{C}=\left(c_{1}, c_{2}, \ldots, c_{m}\right)$, respectively. Let $S: V \rightarrow V$ and $T: W \rightarrow W$ be linear maps. Define a function $S \oplus T: V \oplus W \rightarrow V \oplus W$ (external direct sum) by

$$
(S \oplus T)(v, w)=(S(v), T(w))
$$

Let $\mathcal{D}=\left(\left(b_{1}, 0\right), \ldots,\left(b_{n}, 0\right),\left(0, c_{1}\right), \ldots,\left(0, c_{m}\right)\right)$ be the corresponding ordered basis for $V \oplus W$.
(a) Show that $S \oplus T$ is a linear map.
(b) Show that the matrix $[S \oplus T]_{\mathcal{D}}$ is the direct sum of the matrices $[S]_{\mathcal{B}}$ and $[T]_{\mathcal{C}}$. (Recall that the direct sum of two matrices $A \in F^{n \times n}$ and $B \in F^{m \times m}$ is the $(n+m) \times(n+m)$-block matrix $\left[\begin{array}{cc}A & 0_{n, m} \\ 0_{m, n} & B\end{array}\right]$ where $0_{a, b} \in F^{a \times b}$ denotes the zero matrix.)
3. Let X be any set and \mathbb{F} be any field. Let \mathbb{F}^{X} be the set of all functions from X to \mathbb{F} with pointwise operations $(f+g)(x)=f(x)+g(x)$ and $(\lambda f)(x)=\lambda f(x)$. For each $x \in X$, let $e_{x} \in \mathbb{F}^{X}$ be the characteristic function on $\{x\}$, defined by

$$
e_{x}(y)= \begin{cases}1, & \text { if } y=x \\ 0, & \text { otherwise }\end{cases}
$$

The free \mathbb{F}-vector space on X is defined as $\mathbb{F} X=\operatorname{span}_{\mathbb{F}}\left\{e_{x} \mid x \in X\right\}$.
(a) Show that $\left\{e_{x} \mid x \in X\right\}$ is a basis for $\mathbb{F} X$.
(b) Show that for any function $\varphi: X \rightarrow W$ from X into some vector space W, there is a unique linear map $\Phi: \mathbb{F} X \rightarrow W$ such that $\Phi\left(e_{x}\right)=\varphi(x)$ for all $x \in X$.
(c) Let $X=U$ where U is some vector space. Explain why, in $\mathbb{F} U$, it is the case that for all $u, v \in U: e_{u+v} \neq e_{u}+e_{v}$. Similarly, for $1 \neq \lambda \in \mathbb{F}$ and $u \in U$, explain why $e_{\lambda u} \neq \lambda e_{u}$.
4. Let V, W be finite-dimensional vector spaces with ordered bases \mathcal{B}, \mathcal{C} respectively. Show that a linear transformation $T: V \rightarrow W$ is invertible if and only if its matrix $[T]_{\mathcal{B}, \mathcal{C}}$ is invertible.
5. Let V be a finite-dimensional vector space of dimension $n>1$ and suppose $T: V \rightarrow V$ is a linear map such that $T^{n}=0$ but $T^{n-1} \neq 0$. (Here $T^{n}=$ $T \circ T \circ \cdots \circ T$ and 0 means the zero in $\operatorname{End}(V)$.) Show that there is a basis \mathcal{B} for V such that

$$
[T]_{\mathcal{B}}=\sum_{i=1}^{n-1} E_{i+1, i}=\left[\begin{array}{cccc}
0 & \cdots & 0 & 0 \\
1 & \cdots & 0 & 0 \\
\vdots & \ddots & 0 & 0 \\
0 & \cdots & 1 & 0
\end{array}\right]
$$

