MATH 510, Spring 2024

Homework 1

Due Friday, Jan 26, at 3:20pm. Hand in hard copy at the beginning of class. You should typeset your solutions in T_EX .

- Write the problem statement followed by a proof or solution.
- List problems in the same order they were given.
- If you skip a problem, include the problem statement with no solution.
- 1. Let W_1 and W_2 be subspaces of a vector space V such that the union $W_1 \cup W_2$ is a subspace of V. Prove that one of the subspaces W_i is contained in the other.
- 2. Let V be a finite-dimensional space over a field F. Suppose W_1 and W_2 are subspaces of V with dim $W_1 = \dim W_2$. Prove there is a subspace $U \leq V$ such that $V = W_1 \oplus U = W_2 \oplus U$.

Hint: In the case $W_1 \neq W_2$, use the previous problem to show there is a vector in V which is not in $W_1 \cup W_2$.

- 3. Let V be the vector space of all functions from \mathbb{R} to \mathbb{R} (see [HK, §2.1, Example 3]). Let $V_{\rm e}$ be the subset of even functions, f(-x) = f(x); let $V_{\rm o}$ be the subset of odd functions f(-x) = -f(x).
 - (a) Prove that $V_{\rm e}$ and $V_{\rm o}$ are subspaces of V.
 - (b) Prove that $V_{\rm e} + V_{\rm o} = V$.
 - (c) Prove that $V_{\rm e} \cap V_{\rm o} = \{0\}$.
- 4. Let $V = \mathbb{R}$ be the set of all real numbers. Regard V as a vector space over the field of *rational* numbers \mathbb{Q} , with the usual operations. Prove that this vector space is not finite-dimensional.
- 5. Let W_1, W_2, \ldots, W_n be subspaces of a vector space V such that $V = W_1 + W_2 + \cdots + W_n$. Suppose that $W_i \cap (W_1 + W_2 + \cdots + \widehat{W_i} + \cdots + W_n) = \{\mathbf{0}_V\}$ (here $\widehat{W_i}$ means the term should be *omitted* from the expression, and $\mathbf{0}_V$ is the zero vector in V) for all i. Show that for each vector $v \in V$ there are unique vectors $w_i \in W_i$ such that $v = w_1 + w_2 + \cdots + w_n$.