MATH 510, Spring 2024

Homework 1

Due Friday, Jan 26, at $3: 20 \mathrm{pm}$. Hand in hard copy at the beginning of class. You should typeset your solutions in $\mathrm{T}_{\mathbf{E}} \mathrm{X}$.

- Write the problem statement followed by a proof or solution.
- List problems in the same order they were given.
- If you skip a problem, include the problem statement with no solution.

1. Let W_{1} and W_{2} be subspaces of a vector space V such that the union $W_{1} \cup W_{2}$ is a subspace of V. Prove that one of the subspaces W_{i} is contained in the other.
2. Let V be a finite-dimensional space over a field F. Suppose W_{1} and W_{2} are subspaces of V with $\operatorname{dim} W_{1}=\operatorname{dim} W_{2}$. Prove there is a subspace $U \leq V$ such that $V=W_{1} \oplus U=W_{2} \oplus U$.

Hint: In the case $W_{1} \neq W_{2}$, use the previous problem to show there is a vector in V which is not in $W_{1} \cup W_{2}$.
3. Let V be the vector space of all functions from \mathbb{R} to \mathbb{R} (see [HK, §2.1, Example 3]). Let V_{e} be the subset of even functions, $f(-x)=f(x)$; let V_{o} be the subset of odd functions $f(-x)=-f(x)$.
(a) Prove that V_{e} and V_{o} are subspaces of V.
(b) Prove that $V_{\mathrm{e}}+V_{\mathrm{o}}=V$.
(c) Prove that $V_{\mathrm{e}} \cap V_{\mathrm{o}}=\{0\}$.
4. Let $V=\mathbb{R}$ be the set of all real numbers. Regard V as a vector space over the field of rational numbers \mathbb{Q}, with the usual operations. Prove that this vector space is not finite-dimensional.
5. Let $W_{1}, W_{2}, \ldots, W_{n}$ be subspaces of a vector space V such that $V=W_{1}+$ $W_{2}+\cdots+W_{n}$. Suppose that $W_{i} \cap\left(W_{1}+W_{2}+\cdots+\widehat{W}_{i}+\cdots+W_{n}\right)=\left\{\mathbf{0}_{V}\right\}$ (here \widehat{W}_{i} means the term should be omitted from the expression, and $\mathbf{0}_{V}$ is the zero vector in V) for all i. Show that for each vector $v \in V$ there are unique vectors $w_{i} \in W_{i}$ such that $v=w_{1}+w_{2}+\cdots+w_{n}$.

