Pol eqs $\quad x^{2}+a x+b=0$
Carclaro
Ferrari $\quad\left\{\begin{array}{l}x^{3}+a x^{2}+b x+c=0 \\ x^{4}+\ldots\end{array}\right.$
Def E / F is an extension by radicals if Jchain of subfields

$$
F=F_{0} \subset F_{1} \subset \cdots \subset F_{r}=E
$$

such that $F_{i}=F_{i-1}\left(\alpha_{i}\right), \alpha_{i}^{n_{i}} \in F_{i-1}$ for some $n_{i}>0$.
Note if all $n_{i}=2$, then

$$
\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r}\right)
$$

is a square-root sequence.
Def A pol $f(x) \in F[x]$ is solvable by radicals if the splitting field of $f(x)$ is contained in a field extension of F by radicals.

Ex $f(x)=x^{n}-1 \in \mathbb{Q}[x]$ is solvable by radicals since $E=F\left(\zeta_{n}\right)$ is the splitting field and $F \subset F\left(\zeta_{n}\right), \zeta_{n} n=1 \in F$ shows E / F is an extension by radicals.

Ex (General Pol Eqs).
$n=2$. F field, s, t indeterminates $F(s, t)=\operatorname{Frac} F[s, t]$
The general quadratic pol is

$$
f(x)=x^{2}+5 x+t
$$

$f(x)$ is ir r over $F(s, t)$ by RRT. Glaces: ($\pm 1, \pm t$ only divisors of t) Let $E=F(s, t)(\alpha, \beta)$ be the splitting field: $x^{2}+s x+t=(x-\alpha)(x-\beta)$

$$
\begin{array}{rrr}
\Rightarrow-\beta=s & (\text { Symmetric }) \\
\alpha \beta=t & \sigma(\alpha)=\beta
\end{array}
$$

So $\exists \sigma \in \operatorname{Gal}(E / F(s, t))$

$$
\sigma(\alpha)=\beta
$$

$$
\sigma(\beta)=\alpha
$$

$$
\left.\sigma\right|_{F(s, t)}=1 d
$$

$$
\begin{aligned}
& {[E: F(s, t)]=2 \Rightarrow G a l(E / F(s, t)) \cong S_{2}} \\
& \gamma=\alpha+\frac{s}{2} \Rightarrow \gamma^{2}=\underbrace{\alpha^{2}+s \alpha}_{=-t}+\frac{s^{2}}{4}=\frac{s^{2}-4 t}{4}
\end{aligned}
$$

Shows $F(s, t) \subset E=F(s, t)(\gamma)$ is an extension by radicals. in general:

$$
f(x)=x^{n}+s_{1} x^{n-1}+\ldots+s_{n} \in \mathscr{F (s _ { 1 } , \ldots , s _ { n }) [x]}
$$

$E=$ splitting field. $\quad G a l(E / \mathbb{F}) \cong S_{n}$

Def A finite group G is solvable if \exists seq of subgroups

$$
1=H_{0} \leq H_{1} \leq H_{2} \leq \cdots \leq H_{n}=G
$$

such that
i) $H_{i-1} \subseteq H_{i}$ for $i=1,2, \ldots, n$ (Subnormal)
ii) $\mathrm{H}_{i} / \mathrm{H}_{i-1}$ are abelian.

Remark in ii) "abelian" can be replaced by "cyclic": If H_{i} / H_{i-1} are all abelian, the seq can refined to a seq $1=K_{0} \leqslant \ldots \leqslant K_{N}=G$ s.t. K_{j} / K_{j-1} are all cyclic.

Examples. S_{n} is solvable $1 \leq n \leq 4$

$$
\begin{aligned}
& n=3: \quad 1 \leqslant\langle(123)\rangle \leqslant S_{3} \\
& \langle(123)\rangle / 1 \cong \mathbb{Z}_{3} \quad S_{3} /\langle(123)\rangle \cong \mathbb{Z}_{2}
\end{aligned}
$$

$n=4$:
$N=\left\{(11,(12)(34),(13)(24),(14)(23)\} \leq A_{4}\right.$ $\approx \mathbb{Z}_{2} \times \mathbb{Z}_{2}$
S_{5} is Not solvable:

$$
1 \leq A_{5} \leq S_{5}
$$

A_{5} simple and non-abelian!
Lemma let F be a field of char $F=0$. Let E be the splitting field of $f(x)=x^{n}-a \in F[x]$. Then $G a l(E) F)$ is solvable.
Proof The roots of $f(x)$ are $\sqrt[n]{a}, \sqrt[n]{a} \omega, \ldots \sqrt{a} \omega^{n-1}$
where, ω is a primitive n :th root of minty. $E=F(\sqrt[n]{a}, \omega)$
Case 1: $\omega \in F$. Claim: $\operatorname{Ga}((E / F)$ is abelian. Let $\sigma, \tau \in \operatorname{Gal}(E / F)$. Then

$$
\begin{array}{ll}
\sigma(\sqrt[n]{a})=\sqrt[n]{a} \omega^{i}, & \text { some } i \\
\tau(\sqrt[n]{a})=\sqrt[n]{a} \omega^{j}, & \text { some } j .
\end{array}
$$

$\sigma \tau(\sqrt[n]{a})=\sigma\left(\sqrt[n]{a} \omega^{j}\right)^{\prime}=\sigma(\sqrt[n]{a}) \omega^{j}=\sqrt[n]{a} \omega^{i+j}$
Similarly $\tau \sigma(\sqrt[n]{a})=\left.\right|_{F} ^{\prime}=1 d$
Case 2: $\omega \notin F$. Let $M=F(\omega)$.

$$
F \subset M \subset E
$$

Then M is the splitting field of $x^{n}-1$.

So $\sigma, \tau \in G a l(E / F)$ permute the roots of $x^{n}-1$:

$$
\sigma(\omega)=\omega^{i}, \tau(\omega)=\omega^{j}
$$

Check $\sigma \tau(\omega)=\tau^{\prime} \sigma(\omega) \Rightarrow \operatorname{Gal}(M / F)$ is abelian.

$$
1 \leqslant \operatorname{Gal}(E / M) \leqslant \operatorname{Gal}(E / F)
$$

Gal (E/M) is abelian by previous argument $(\omega \in M)$. And

$$
\frac{G a l(E / F)}{\operatorname{Gal}(E / M)} \cong \operatorname{Gal}(M / F) \text { abelian. }
$$

Fund Th. Gal Th.
$\Rightarrow \operatorname{Gal}(E / F)$ is solvable.
Lemma F field, char $F=0$.
Let

$$
F=F_{0} \subset F_{1} \subset F_{2} \subset \cdots \subset F_{r}=E
$$

be a radical extension. Then there is a radical extension

$$
F=k_{0} \subset k_{1} \subset \cdots \in k_{r}=k
$$

such that $K \supset E$ and K_{i} / K_{i-1} is Galois.

Thu Let $f(x) \in F[x]$, char $F=0$. If $f(x)$ is solvable by radicals then $\operatorname{Gal}(E / F)$ is solvable $(E$ (is the splitting field).
Remark: Converse also holds.] Proof Let

$$
F=F_{0} \subset F_{1} \subset \cdots \subset F_{n}=E
$$

be an extension by radicals.
By Lemma, can assume E is the splitting field of $f(x)$ and F_{i} / F_{i-1} is Galois. By Fund Th. of Galois Theory $\operatorname{Gal}\left(E / F_{i}\right) \leq \operatorname{Gal}\left(E / F_{i-1}\right)$. Si we get Subnormal series $1 \leqslant \operatorname{Gal}\left(E / F_{n-1}\right) \leq \cdots \leqslant \operatorname{Gal}\left(E / F_{1}\right) \leqslant \operatorname{Gal}\left(E_{F}\right)$. and

$$
\operatorname{Gal}\left(E / F_{i-1}\right) / G_{a l}\left(E / F_{i}\right) \cong \operatorname{Gal}\left(F_{i} / F_{i-1}\right)
$$

By lemma, Gal $\left(F_{i} / F_{i-1}\right)$ is solvable. After refining (if neo.), we conclude $G a l(E / F)$ is solvable.

Cor General quintic is not solvable by radicals, Since its Galois gre is S_{5}.

