Math 403/503 Spring 2024

Homework 9, due April 17

- 1. Let E/F be a field extension. If $\alpha, \beta, \gamma \in E$ are algebraic over F, explain why $\alpha + \beta + \gamma$ is algebraic over F.
- 2. Let *E* be a splitting field for an irreducible polynomial $p(x) \in F[x]$ over *F*, and α and β be two roots of p(x). Show that there is an isomorphism $\Phi: E \to E$ such that $\Phi(\alpha) = \beta$.
- 3. Prove that the fields $\mathbb{Q}(\sqrt[4]{3})$ and $\mathbb{Q}(\sqrt[4]{3}i)$ are isomorphic but not equal.
- 4. Prove or disprove: $\mathbb{Q}(\sqrt{2}) \cong \mathbb{Q}(\sqrt{3})$.
- 5. Let K be an algebraic extension of E, and E an algebraic extension of F. Prove that K is algebraic over F. [Caution: Do not assume that the extensions are finite.]