Math 403/503 Spring 2024

Homework 8, due April 10

- 1. Show that each of the following numbers is algebraic over \mathbb{Q} .
 - (a) $\alpha = \sqrt[3]{\sqrt{1/3} 5}$
 - (b) $\beta = \sqrt{2} \sqrt[3]{5}$
- 2. Let E/F be a field extension. Prove that if $\alpha \in E$ is transcendental over F, then α^k is transcendental over F for any positive integer k.
- 3. Let E/F be a field extension and let F_1 and F_2 be subfields of E containing F. Let $d_i = [E : F_i]$ for i = 1, 2. If d_1 and d_2 are relatively prime, show that [E : F] is at least d_1d_2 .

- 4. Find the minimal polynomial of the number over \mathbb{Q} :
 - (a) $\gamma = 1 + \sqrt[3]{2}$
 - (b) $z = \cos \theta + i \sin \theta$ for $\theta = 2\pi/p$ with p prime. (*Hint:* Consider z^p ; use Euler's formula.)
- 5. Find a basis for the field extension. What is the degree of the extension?
 - (a) $\mathbb{Q}(\sqrt{8})$ over $\mathbb{Q}(\sqrt{2})$
 - (b) $\mathbb{Q}(\sqrt{3},\sqrt{5},\sqrt{7})$ over \mathbb{Q}
- 6. Consider the field extension $\mathbb{Q}(\sqrt[4]{3}, i)$ over \mathbb{Q} .
 - (a) Find a basis for the field extension $\mathbb{Q}(\sqrt[4]{3}, i)$ over \mathbb{Q} . Conclude that $[\mathbb{Q}(\sqrt[4]{3}, i) : \mathbb{Q}] = 8$.
 - (b) Find all subfields F of $\mathbb{Q}(\sqrt[4]{3}, i)$ such that $[F : \mathbb{Q}] = 2$.
 - (c) Find all subfields F of $\mathbb{Q}(\sqrt[4]{3}, i)$ such that $[F : \mathbb{Q}] = 4$.