Math 403/503 Spring 2024

Homework 8, due April 10

1. Show that each of the following numbers is algebraic over \mathbb{Q}.
(a) $\alpha=\sqrt[3]{\sqrt{1 / 3}-5}$
(b) $\beta=\sqrt{2}-\sqrt[3]{5}$
2. Let E / F be a field extension. Prove that if $\alpha \in E$ is transcendental over F, then α^{k} is transcendental over F for any positive integer k.
3. Let E / F be a field extension and let F_{1} and F_{2} be subfields of E containing F. Let $d_{i}=\left[E: F_{i}\right]$ for $i=1,2$. If d_{1} and d_{2} are relatively prime, show that $[E: F]$ is at least $d_{1} d_{2}$.

4. Find the minimal polynomial of the number over \mathbb{Q} :
(a) $\gamma=1+\sqrt[3]{2}$
(b) $z=\cos \theta+i \sin \theta$ for $\theta=2 \pi / p$ with p prime. (Hint: Consider z^{p}; use Euler's formula.)
5. Find a basis for the field extension. What is the degree of the extension?
(a) $\mathbb{Q}(\sqrt{8})$ over $\mathbb{Q}(\sqrt{2})$
(b) $\mathbb{Q}(\sqrt{3}, \sqrt{5}, \sqrt{7})$ over \mathbb{Q}
6. Consider the field extension $\mathbb{Q}(\sqrt[4]{3}, i)$ over \mathbb{Q}.
(a) Find a basis for the field extension $\mathbb{Q}(\sqrt[4]{3}, i)$ over \mathbb{Q}. Conclude that $[\mathbb{Q}(\sqrt[4]{3}, i): \mathbb{Q}]=8$.
(b) Find all subfields F of $\mathbb{Q}(\sqrt[4]{3}, i)$ such that $[F: \mathbb{Q}]=2$.
(c) Find all subfields F of $\mathbb{Q}(\sqrt[4]{3}, i)$ such that $[F: \mathbb{Q}]=4$.
