Math 403/503 Spring 2024

In this class, by

- a ring R we mean a ring with identity 1_R ;
- a subring $S \subseteq R$ we mean subring containing the identity 1_R ;
- a ring homomorphism $\varphi : R \to T$ we mean ring homomorphism sending 1_R to 1_T .

Homework 7, due March 27

- 1. The ring of *Gaussian integers*, $\mathbb{Z}[i] = \{a + bi \in \mathbb{C} \mid a, b \in \mathbb{Z}\}$, is a UFD. Factor each of the following elements in $\mathbb{Z}[i]$ into a product of irreducibles.
 - (a) 5
 - (b) 6 + 8i
 - (c) 1 + 3i
- 2. Prove that the field of fractions of the Gaussian integers, $\mathbb{Z}[i]$, is isomorphic to

$$\mathbb{Q}(i) = \{ p + qi : p, q \in \mathbb{Q} \}.$$

- 3. Let D be an integral domain. Define a relation on D by $a \sim b$ iff a and b are associates in D. Prove that \sim is an equivalence relation on D.
- 4. An ideal I of a commutative ring R is said to be *finitely generated* if there exist elements a_1, a_2, \ldots, a_n in R such that every element r in I can be written $r = a_1r_1 + \cdots + a_nr_n$ for some r_1, \ldots, r_n in R. Prove that R satisfies the ascending chain condition if and only if every ideal of R is finitely generated.
- 5. Show that $\mathbb{Z}[\sqrt{-5}]$ is not a unique factorization domain.
- 6. Prove that $\mathbb{Z}[x]$ cannot be a Euclidean domain.
- 7. Let D be a Euclidean domain with Euclidean valuation ν . If a and b are associates in D, prove that $\nu(a) = \nu(b)$.