Math 403/503 Spring 2024

In this class, by

- a ring R we mean a ring with identity 1_{R};
- a subring $S \subseteq R$ we mean subring containing the identity 1_{R};
- a ring homomorphism $\varphi: R \rightarrow T$ we mean ring homomorphism sending 1_{R} to 1_{T}.

Homework 7, due March 27

1. The ring of Gaussian integers, $\mathbb{Z}[i]=\{a+b i \in \mathbb{C} \mid a, b \in \mathbb{Z}\}$, is a UFD. Factor each of the following elements in $\mathbb{Z}[i]$ into a product of irreducibles.
(a) 5
(b) $6+8 i$
(c) $1+3 i$
2. Prove that the field of fractions of the Gaussian integers, $\mathbb{Z}[i]$, is isomorphic to

$$
\mathbb{Q}(i)=\{p+q i: p, q \in \mathbb{Q}\} .
$$

3. Let D be an integral domain. Define a relation on D by $a \sim b$ iff a and b are associates in D. Prove that \sim is an equivalence relation on D.
4. An ideal I of a commutative ring R is said to be finitely generated if there exist elements $a_{1}, a_{2}, \ldots, a_{n}$ in R such that every element r in I can be written $r=a_{1} r_{1}+\cdots+a_{n} r_{n}$ for some r_{1}, \ldots, r_{n} in R. Prove that R satisfies the ascending chain condition if and only if every ideal of R is finitely generated.
5. Show that $\mathbb{Z}[\sqrt{-5}]$ is not a unique factorization domain.
6. Prove that $\mathbb{Z}[x]$ cannot be a Euclidean domain.
7. Let D be a Euclidean domain with Euclidean valuation ν. If a and b are associates in D, prove that $\nu(a)=\nu(b)$.
