Math 403/503 Spring 2024

In this class, by

- a ring R we mean a ring with identity 1_{R};
- a subring $S \subseteq R$ we mean subring containing the identity 1_{R};
- a ring homomorphism $\varphi: R \rightarrow T$ we mean ring homomorphism sending 1_{R} to 1_{T}.

Homework 6, due March 20

1. Let R be a commutative ring. The radical of an ideal $I \subseteq R$, denoted \sqrt{I}, is defined by

$$
\sqrt{I}=\left\{a \in R \mid a^{n} \in I \text { for some integer } n>0\right\}
$$

Show that \sqrt{I} is an ideal of R.
2. Let R be a commutative ring. The nilradical of R is defined as $\mathcal{N}(R)=$ $\sqrt{(0)}$. In other words, $\mathcal{N}(R)$ is the set of all nilpotent elements of R :

$$
\mathcal{N}(R)=\left\{a \in R \mid a^{n}=0 \text { for some integer } n>0\right\} .
$$

Show that $\mathcal{N}(R)$ is equal to the intersection of all prime ideals of R. (Hint: If $a \in R$ is not nilpotent, the set of all ideals not intersecting $\left\{a^{n} \mid n \geq 0\right\}$ has a maximal element; show it is a prime ideal.)
3. Let R be a commutative ring. Show that R is a field if and only if R has exactly two ideals ($\{0\}$ and R itself). (This shows that fields are precisely the commutative simple rings.)
4. Prove the Third Isomorphism Theorem for rings: Let R be a ring and I and J be ideals of R, where $J \subseteq I$. Then

$$
R / I \cong \frac{R / J}{I / J}
$$

5. Show that if R is an integral domain, then $R[x]$ is an integral domain. Conclude that if F is a field, then the ring $F\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ of polynomials in n variables is an integral domain.
6. Show that $x^{p}-x \in \mathbb{Z}_{p}[x]$ has p distinct zeros in Z_{p}, for any prime p. Conclude that

$$
x^{p}-x=x(x-1)(x-2) \cdots(x-(p-1))
$$

7. Which of the following polynomials in $\mathbb{Q}[x]$ are irreducible?
(a) $x^{4}-2 x^{3}+2 x^{2}+x+4$
(b) $3 x^{5}-4 x^{3}-6 x^{2}+6$
(c) $x^{4}-5 x^{3}+3 x-2$
(d) $5 x^{5}-6 x^{4}-3 x^{2}+9 x-15$
