Math 403/503 Spring 2024

Problems 4 and 5 were updated on March 4, 5:20pm.
In this class, by

- a ring R we mean a ring with identity 1_{R};
- a subring $S \subseteq R$ we mean subring containing the identity 1_{R};
- a ring homomorphism $\varphi: R \rightarrow T$ we mean ring homomorphism sending 1_{R} to 1_{T}.

Homework 5, due March 6

1. Determine which of the following sets are rings with respect to the usual operations of addition and multiplication. If the set is a ring, determine whether it is an integral domain or a field (or both). (Hint: Use the subring criterion where appropriate.)
(a) $7 \mathbb{Z}$
(b) \mathbb{Z}_{18}
(c) $\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$
(d) $R=\{a+b \sqrt[3]{3} \mid a, b \in \mathbb{Q}\}$
(e) $\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}$ where $i^{2}=-1$
(f) $\mathbb{Q}(\sqrt[3]{3})=\{a+b \sqrt[3]{3}+c \sqrt[3]{9} \mid a, b, c \in \mathbb{Q}\}$
2. Find all the units in the ring $M_{2}\left(\mathbb{Z}_{2}\right)$ of all 2×2-matrices with entries from \mathbb{Z}_{2}.
3. If R and S are rings, prove that $R \times S$ is a ring with component-wise operations.
4. Find all ring homomorphisms $\varphi: \mathbb{Z} / 6 \mathbb{Z} \rightarrow \mathbb{Z} / 15 \mathbb{Z}$ or prove that there are none.
5. Define a map $\varphi: \mathbb{C} \rightarrow M_{2}(\mathbb{R})$ by

$$
\varphi(a+b i)=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]
$$

Prove that φ is an injective homomorphism of rings.
6. Let $\varphi: R \rightarrow S$ be a ring homomorphism. Prove each of the following statements.
(a) If R is a commutative ring, then $\varphi(R)$ is a commutative subring of S.
(b) If R is a field, and $\varphi(R) \neq\left\{0_{S}\right\}$, then φ is injective.
7. Let R be a ring. Define the center of R to be

$$
Z(R)=\{a \in R \mid a r=r a \text { for all } r \in R\} .
$$

Prove that $Z(R)$ is a commutative subring of R.

