Math 403/503 Spring 2024

Problems 4 and 5 were updated on March 4, 5:20pm.

In this class, by

- a ring R we mean a ring with identity 1_R ;
- a subring $S \subseteq R$ we mean subring containing the identity 1_R ;
- a ring homomorphism $\varphi : R \to T$ we mean ring homomorphism sending 1_R to 1_T .

Homework 5, due March 6

- 1. Determine which of the following sets are **rings** with respect to the usual operations of addition and multiplication. If the set is a ring, determine whether it is an **integral domain** or a **field** (or both). (*Hint:* Use the subring criterion where appropriate.)
 - (a) 7Z
 - (b) \mathbb{Z}_{18}
 - (c) $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$
 - (d) $R = \{a + b\sqrt[3]{3} \mid a, b \in \mathbb{Q}\}$
 - (e) $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ where $i^2 = -1$
 - (f) $\mathbb{Q}(\sqrt[3]{3}) = \{a + b\sqrt[3]{3} + c\sqrt[3]{9} \mid a, b, c \in \mathbb{Q}\}$
- 2. Find all the units in the ring $M_2(\mathbb{Z}_2)$ of all 2×2 -matrices with entries from \mathbb{Z}_2 .
- 3. If R and S are rings, prove that $R \times S$ is a ring with component-wise operations.
- 4. Find all ring homomorphisms $\varphi : \mathbb{Z}/6\mathbb{Z} \to \mathbb{Z}/15\mathbb{Z}$ or prove that there are none.
- 5. Define a map $\varphi : \mathbb{C} \to M_2(\mathbb{R})$ by

$$\varphi(a+bi) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

Prove that φ is an **injective homomorphism** of rings.

- 6. Let $\varphi:R\to S$ be a ring homomorphism. Prove each of the following statements.
 - (a) If R is a commutative ring, then $\varphi(R)$ is a commutative subring of S.
 - (b) If R is a field, and $\varphi(R) \neq \{0_S\}$, then φ is injective.

7. Let R be a ring. Define the *center* of R to be

 $Z(R) = \{ a \in R \mid ar = ra \text{ for all } r \in R \}.$

Prove that Z(R) is a commutative subring of R.