Math 403/503 Spring 2024

Homework 4, due February 14

1. Let G be the additive group of real numbers. Let the action of $\theta \in G$ on the real plane \mathbb{R}^{2} be given by rotating the plane counterclockwise about the origin through θ radians. Let P be a point on the plane other than the origin.
(a) Show that this rule defines an action.
(b) Describe geometrically the orbit containing P.
(c) Find the stablizer subgroup G_{P} of P.
2. Let G be a group acting on a set X. Show that $g G_{x} g^{-1}=G_{g . x}$ for all $g \in G$ and all $x \in X$.
3. Let $G=A_{4}$ and let G act on itself by conjugation.
(a) Determine the orbits (conjugacy classes) of each element in G.
(b) For each $\sigma \in G$, find the stabilizer subgroup G_{σ} (centralizer).
4. Let $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$ be the quaternion group of order 8 .
(a) Find $|Z(G)|$.
(b) Find a representative g_{i} for each non-trivial conjugacy class of Q_{8}.
(c) Compute $\left[G: C_{G}\left(g_{i}\right)\right]$ and verify that the class equation holds for G.
5. Suppose that the vertices of a regular hexagon are to be colored either cardinal or gold. How many ways can this be done up to a symmetry of the hexagon (from the dihedral group D_{6})?
