Math 403/503 Spring 2024

Homework 2, due January 31

1. Consider the abelian group $G=\mathbb{Z}_{12}$. Let $N=\{\overline{0}, \overline{3}, \overline{6}, \overline{9}\}$ (where $\bar{a}=[a]_{12}$ denotes the congruence class of a modulo 12). Find the Cayley table for the group G / N. Compare it to the Cayley table for \mathbb{Z}_{3}.
2. Let $G=D_{n}=\left\{1, r, r^{2}, \ldots, r^{n-1}, s, s r, s r^{2}, \ldots, s r^{n-1}\right\}$ be the dihedral group of order $2 n$. Let $N=\langle r\rangle=\left\{1, r, r^{2}, \ldots, r^{n-1}\right\}$. Show that N is a normal subgroup of G and that $G / N \cong \mathbb{Z}_{2}$.
3. Let G_{1} and G_{2} be groups with identity elements denoted e_{1} and e_{2} respectively. Let $G=G_{1} \times G_{2}$.
(a) Show that $\widetilde{G}_{1}=\left\{\left(x, e_{2}\right) \mid x \in G_{1}\right\}$ is a normal subgroup of G.
(b) Show that G / \widetilde{G}_{1} is isomorphic to the group G_{2}. Hint: Find a surjective homomorphism $\varphi: G \rightarrow G_{2}$ with kernel equal to \widetilde{G}_{1}. Then use the First Isomorphism Theorem.
4. Show that $\mathbb{Z}_{12} \cong \mathbb{Z}_{3} \times \mathbb{Z}_{4}$. Hint: Consider the homomorphism $\varphi: \mathbb{Z} \rightarrow$ $\mathbb{Z}_{3} \times \mathbb{Z}_{4}, \varphi(a)=\left([a]_{3},[a]_{4}\right)$.
5. Let M be a normal subgroup of a group G and let N be a normal subgroup of a group H. If $\varphi: G \rightarrow H$ is a homomorphism such that $\varphi(M) \subseteq N$, prove that the map $\psi: G / M \rightarrow H / N$ given by $\psi(g M)=\varphi(g) N$ is a well-defined homomorphism.
