Math 403/503 Spring 2024

Practice Problems for Exam 2

- 1. (a) Prove that $x^5 9x + 3$ is irreducible over \mathbb{Q} .
 - (b) Is $f(x) = x^4 + 2$ irreducible over \mathbb{Q} ? Over \mathbb{R} ?
 - (c) Prove that $x^4 3x + 1$ is irreducible over \mathbb{Q} .
- 2. Let D be an integral domain and $P \subseteq D$ a prime ideal. Let $F = \operatorname{Frac} D$ be the field of fractions of D. Consider

$$D_P = \{\frac{a}{b} \mid b \notin P\}$$

- (a) Show that D_P is a subring of F.
- (b) Show that $\overline{P} := \{ \frac{a}{b} \in D_P \mid a \in P \}$ is the unique maximal ideal of D_P .
- 3. Show that the composition of two ring homomorphisms is a ring homomorphism. What is the kernel of the composition?
- 4. Let R be a commutative ring and I be an ideal of R[x]. Let

$$I_0 = \{ f(0) \mid f(x) \in I \}$$

be the set of constant terms of elements of I. Show that I_0 is an ideal of R and that

$$\frac{R[x]}{I+(x)} \cong \frac{R}{I_0}.$$

Hint: Consider an evaluation homomorphism $R[x] \to R$, composed with the canonical projection $R \to R/I_0$. Use the previous problem and the First Isomorphism Theorem for rings.

- 5. Let R and S be commutative rings and $\varphi : R \to S$ be a ring homomorphism. Let Q be a prime ideal of S. Prove that $\varphi^{-1}(Q)$ is a prime ideal of R.
- 6. Let $S = \mathbb{Z}[i]$ be the ring of Gaussian integers. Prove that S[x] is a unique factorization domain.
- 7. If F is a field, prove that F[x, y] is not a Euclidean domain.
- 8. If K and L are fields, show that $K \times L$ has exactly three maximal ideals.
- 9. Let R be a ring and $\varphi : R \to R$ be a ring automorphism (i.e. bijective ring homomorphism). Let I be an ideal of R.
 - (a) Show that $\varphi(I)$ is also an ideal of R.
 - (b) Prove that $\varphi(I)$ is prime iff I is prime.
- 10. Let P and Q be distinct nonzero prime ideal of a PID, R. Prove that

$$\varphi: R \longrightarrow \frac{R}{P} \times \frac{R}{Q}, \quad \varphi(r) = (r+P, r+Q)$$

is a surjective ring homomorphism.

- 11. Find a commutative ring R such that R[x] contains a nonconstant unit.
- 12. Let F be a field. Let R = F[x, y] = F[x][y] be the ring of polynomials in two indeterminates, and I be the principal ideal $(x^2 + y)$ of R. Prove that R/I is isomorphic to the polynomial ring F[z].